

Kyoto International Conference Center, August 10 - 15, 2014

The 15th International Heat Transfer Conference

臣相三王之言

Conference Program

Contents

Welcome

Chair, IHTC-15 ······	1
President, HTSJ······2	2
President, AIHTC	2
Vice President, SCJ	3
Prime Minster of Japan	3
Acknowledgments	1

General Information

Registration, Name Badges, Tickets 6
Welcome Reception 6
Lunches ······
Refreshment Breaks 6
Conference Banquet 6
Farewell
Questionnaire to Facilitate Food Saving
Smoking
EventMobile and for IHTC
Wireless Network System
Conference Proceedings
IHTC Digital Library (IDL)
Cover page Coifukciaci (Katauchika Hakucai)
Cover page—Gallukaiser (Natsushika Hokusai)— ····· o
Clabel Information
Global Information 8

Technical Program

Important Notes to Presenters, etc.	10
Floor Map	11
Schedule at a Glance	12
Plenary and Fourier Lectures	14
Plenary Panel Session	15
Keynote/Award Sessions in Parallel	16
Panel Session	28

General Sessions in Series	29
General Sessions in Parallel	94
Awards	118
Exhibitors	120

Japan & Kyoto

Maps of Japan & Kyoto City	122
Education System in Japan	123
Kyoto (Heian-kyo) ······	123
Largest Full Moon of the Year: 10th, Sunday	124
Special Tour: 13th, Wednesday	124
Ikebana Experience: 14th, Thursday	124
Gozan-no-Okuribi: 16th, Saturday	124

Miscellaneous Topics

History of IHTCs	126
Personal Memories of IHTCs	127
Special Public Seminar	128
Joule Energy Contest (JENECON)	129
Young Researcher Meeting (YRM)	130
Word Heritage	131
Cold and/or Hot Breaks	133

Committees, Author Index, Statistics, End-Credit Rolls

Meetings	136
AIHTC	136
IHTC-15 Committees	137
Author Index	139
Statistics	153
End-Credit Rolls	154
Memo	

Announcement of IHTC-16, Beijing, 2018

Welcome

Welcome

Welcome to the historic city of Kyoto and to the 15th International Heat Transfer Conference (IHTC-15), 2014.

Heat transfer, a major academic discipline originating from seminal studies of thermal non-equilibrium phenomena, has grown to include the science of transport phenomena for ions, electrons, and chemical species. This discipline deals with essential fundamentals such as energy, materials, food and water, and also with a range of technologies that support modern lifestyles. Heat transfer is now a vitally important field, as scientists and engineers face difficult challenges: development of cutting-edge technologies for highly efficient energy systems, massive information/communication equipment, high-value-added manufacturing, and for comfortable living environments, to name just a few. Due to its enormous scope and impact, the field of heat transfer is often called "thermal science."

For more than 60 years, IHTC events, nicknamed "Heat Transfer Olympics," have achieved worthy goals by offering unique opportunities for scientists and engineers to gather together, exchange state-of-the-art knowledge, and develop personal networks. This year's Organizing Committee has continued IHTC traditions while improving certain aspects, so that IHTC-15 will meet the requirements of the rapidly changing scientific environment in the 21st century. First, we employed a rigorous review process for submitted manuscripts to ensure that the archive of contributed papers will be of journal quality. As a result, from the initially received collection of 1300 extended abstracts, 700 full papers were finally accepted for IHTC-15. To facilitate lively discussions, all of these papers will be presented in oral sessions, unlike the poster sessions of previous IHTCs. These documents will be officially registered and included in the Begell House IHTC Digital Library along with all previous IHTC papers.

In addition to exploring traditional research areas, IHTC-15 asks an important question in order to better serve society: "What is the role of thermal science in meeting societal challenges?" Clearly, we face major issues such as ensuring sustainable development, maintaining healthy ageing, providing sufficient food for all, and stimulating economic growth, and we need to develop scientific and technological solutions. Successfully meeting these challenges requires that we shape our current and future roles more concretely, and formulate an interdisciplinary framework for collaboration among colleagues active across a wider range of physical, life, and information sciences. Therefore, in addition to 30 keynote lectures, we have invited prominent scientific leaders and pioneers to deliver lectures and speak on panels. The Conference Program is now enriched with several special events such as the Special Public Seminar, the Joule Energy Contest, and the Young Researchers Meeting.

We are committed to making your time in Kyoto as enjoyable and productive as possible. To facilitate this process, we are providing the EventMobile app for mobile devices, so you can easily access information about technical programs, session rooms and speakers, and also customize a personal schedule. To nourish your body as well as your mind, we have ensured the provision of quality Japanese food, "Washoku," which was designated an intangible cultural heritage by UNESCO earlier this year. We hope you will enjoy exploring traditional Japanese culture around Kyoto. If you extend your stay, you can experience the Gozan Fire Festival in Kyoto that takes place on Saturday evening, August 16, an event with an ancient history that is both exciting and profound.

Finally, I am grateful to the Science Council of Japan, the Heat Transfer Society of Japan, the International Centre for Heat and Mass Transfer, and numerous cooperating technical societies and companies, for their generous supports. I would also like to express my sincere thanks to the members of the Assembly of IHTCs, all IHTC-15 Committee members, the secretariat, and student aids, for their enormous contributions in organizing and running this outstanding conference.

Nobuhide Kasagi

Conference Chair

Vice President, The Assembly for International Heat Transfer Conferences Deputy Director-General, Center for Research and Development Strategy, Japan Science and Technology Agency Professor Emeritus, The University of Tokyo

Welcome

Welcome Greetings from the Heat Transfer Society of Japan (HTSJ)

On behalf of the Heat Transfer Society of Japan (HTSJ), I am pleased to extend my hearty welcome to all IHTC-15 participants in Kyoto.

The HTSJ was established in 1961 after carrying out much challenging research, at the dawn of heat transfer studies in Japan. Since then, heat transfer research in Japan has burgeoned not only along fundamental lines but also in newly developed interdisciplinary fields of micro- and nano-scale phenomena, bio-heat and mass transfer, chemical reactions, interfaces, quantum phenomena, electronics, and various energy-related phenomena. Research on a broad range of fronts has contributed to the realization of superlative energy saving technologies in Japan.

The 50th HTSJ anniversary ceremony was held in November, 2011; we reviewed 50 years of concerted effort and embarked on a new era of innovations. To commemorate this occasion, the HTSJ established a new international prize, the "Nukiyama Memorial Award," to be awarded to a globally distinguished researcher every two years. The second presentation of this award will be celebrated during IHTC-15.

The previous IHTC in Japan was the 5th IHTC, held in Tokyo in 1974, forty years ago. It is our great pleasure to host the IHTC again, and I hope all participants will have a comfortable stay and enjoy not only fruitful technical discussions, but also traditional Japanese culture, food and nature in the ancient capital city, Kyoto.

Ken Okazaki

President, The Heat Transfer Society of Japan Professor, Tokyo Institute of Technology Welcome from the Assembly for International Heat Transfer Conferences (AIHTC)

The Assembly for International Heat Transfer Conferences (AIHTC), along with its delegates and 23 member national organizations, is delighted to welcome all the participants from around the world to the 2014 International Heat Transfer Conference in Kyoto, Japan, held under the joint-sponsorship of the Science Council of Japan and the Heat Transfer Society of Japan.

The AIHTC was founded in Chicago in 1966 to provide a worldwide forum for the presentation, discussion, and identification of future directions and priorities in the various domains of thermal science and engineering. This 15th IHTC is a testament to the wisdom of the founders of AIHTC and to the vitality of the international thermal science and engineering community. The Heat Transfer Society of Japan has been a stalwart member of the AIHTC since its earliest days, serving as co-host of the 5th International Heat Transfer Conference in Tokyo in 1974, nurturing this domain of science and technology through its annual National Heat Transfer Symposium and its Thermal Science and Engineering Journal, and co-hosting us once again at this 2014 IHTC.

These two Conferences, 40 years apart, along with the active participation of Japanese researchers and engineers in the quadrennial IHTC's, serves to showcase Japan's continuing contributions on the world stage and its pivotal role as a major international center for heat transfer and thermal engineering research and development.

We look forward to an outstanding IHTC-15—good science, good friendship, and good food!

Avram Bar-Cohen

President, The Assembly for International Heat Transfer Conferences Distinguished University Professor University of Maryland

Welcome Address

It is a great pleasure for me, as Science Council of Japan representative, to welcome all of you to the 15th International Heat Transfer Conference (IHTC-15).

Science Council of Japan is an organization representing a broad range of the Japanese scientific community in the fields of humanities, social sciences, life sciences, physical sciences, and engineering. Our main purpose is to fulfill the diverse social responsibilities of the Japanese scientific community through the development of science.

Since its establishment in 1949, Science Council of Japan has constantly promoted international exchange in science through its cooperation with academic organizations from around the world. To this end, we have hosted international conferences in Japan, and sent researchers to conferences held abroad.

By co-hosting this International Conference with the Heat Transfer Society of Japan, I am especially delighted to have this opportunity to welcome world-renowned scientists in this field to Kyoto, and I expect that their lectures, papers, and panel discussions, will inspire significant communication and contribute to further progress. IHTC-15 is a particularly opportune occasion to share and appreciate progress at the frontier of heat transfer research, and ensure that the fruits of our research bring maximum benefit to humankind.

I would like to thank all the supporters and organizing committee members, and I share their hope that IHTC-15 will be a resounding success. I also hope that each of you will have an enjoyable and memorable stay in Kyoto and gain a deeper understanding of Japanese culture.

Fumiko Kasuga

Vice-President, Science Council of Japan Director, National Institute of Health Sciences, Ministry of Health, Labour and Welfare, Japan

Message from the Prime Minister of Japan

(Photo is permitted only on the hardcopy)

© Courtesy of Cabinet Public Relations Office, the Government of Japan

I am pleased to extend my hearty welcome to all participants from all over the world on this occasion of the opening ceremony of the 15th International Heat Transfer Conference in Kyoto.

I am happy to express that the conference is held under the joint-sponsorship of the Science Council of Japan and the Heat Transfer Society of Japan.

I wish a great success of this international conference for advancement in the field of Heat Transfer.

Shinzo Abe

Prime Minister

Acknowledgments

Hosting Organizations

The Heat Transfer Society of Japan Science Council of Japan

Umbrella Organization

The Assembly for International Heat Transfer Conferences

Supporting Organizations

International Centre for Heat and Mass Transfer The Japan Society of Mechanical Engineers The Society of Chemical Engineers, Japan

Cooperative Organizations

Kyoto City Kyoto Prefecture Kyoto Convention Bureau Kyoto City Board of Education Kyoto Prefectural Board of Education Japan Science and Technology Agency Institute of National Colleges of Technology

Architectural Institute of Japan Atomic Energy Society of Japan Combustion Society of Japan Cryogenics and Superconductivity Society of Japan

Gas Turbine Society of Japan Heat Pump & Thermal Storage Technology Center of Japan Hydrogen Energy Systems Society of Japan Japan Society of Energy and Resources Japan Society of Thermophysical Properties Japan Solar Energy Society Society of Automotive Engineers of Japan The Japan Society for Aeronautical and Space Sciences The Japan Institute of Energy The Japan Institute of Marine Engineering The Japan Society of Calorimetry and Thermal Analysis The Japan Society of Fluid Mechanics The Japan Society of Refrigerating and Air Conditioning Engineers The Japanese Society for Multiphase Flow The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan The Thermoelectrics Society of Japan The Visualization Society of Japan

Sponsors

Begell House Inc. http://www.begellhouse.com/

begell

Kameyama Candle House http://k-design.kameyama.co.jp/index.html

Suntory Holdings Limited http://www.suntory.com/index.html

General Information

From the "Choju Giga" (The Scrolls of Frolicking Animals) handed down for centureis at Kozanji Temple.

Registration, Name Badges, Tickets

Hours and Location

The registration desk will be located at the entrance hall of the Kyoto International Conference Center and will be open during the following times:

Sunday,	10 August	15:00 - 19:00
Monday,	11 August	07:30 - 17:00
Tuesday,	12 August	07:45 - 17:00
Wednesday,	13 August	07:45 - 12:00
Thursday,	14 August	07:45 - 19:00
Friday,	15 August	08:00 - 16:00

On-site Registration Fees

Regular*1	80,000 JPY
Student with Banquet*1	50,000 JPY
Student without Banquet*2	40,000 JPY
Accompanying Person*3	10,000 JPY

*1 Includes admission to all technical sessions, conference proceedings data on a USB flash drive, final program, name badge, welcome reception on Aug.10, lunches on Aug. 11, 12, 14 and 15, conference banquet on Aug. 14, and break refreshments.

*2 Includes admission to all technical sessions, conference proceedings data on a USB flash drive, final program, name badge, welcome reception on Aug.10, lunches on Aug. 11, 12, 14 and 15, and break refreshments.

*3 Includes name badge, welcome reception on Aug.10, and conference banquet on Aug. 14.

* Students must present a valid student ID.

Name Badge

Each delegate registered for IHTC-15 will receive a name badge at the registration desk. Admission to all conference functions is via the official IHTC-15 badge only. Please wear your name badge at all times

Tickets

Each delegate will receive various tickets together with their name badge at the registration desk. The number and type of tickets you receive depend on your registration category. Use your name holder to keep your tickets handy. The conference organizers cannot reissue any ticket.

Welcome Reception

Sunday, 10 August, 18:30–20:00, Swan and Garden Everybody with a name badge is welcome.

Lunches

Enjoy lunches in the designated lunch areas, Sakura and Swan. Please exchange your lunch ticket of the day for a lunch box at the entrance to Sakura and Swan.

In accordance with public health center guidelines, lunch boxes must be consumed within the conference center. Thank you for your cooperation.

Refreshment Breaks

Refreshment services will be available during the following times near the entrance of Room A, Rooms C1 & C2, and Room D.

	,	,
Monday,	11 August	15:30 - 16:00
Tuesday,	12 August	08:00 - 08:35
		16:00 - 16:30
Wednesday,	13 August	07:45 - 08:15
Thursday,	14 August	07:45 - 08:15
Friday,	15 August	08:00 - 08:35
	-	14:50 - 15:10

Conference Banquet

Thursday, 14 August, 19:00–21:00, Event Hall Individual banquet tickets are required to enter the Event Hall. The Hall opens at 18:15.

Farewell

Friday, 15 August, 17:20–18:00, in front of Room D Everybody with a name badge is welcome.

Questionnaire to Facilitate Food Saving (only for persons who skip at least one meal)

Although we are fortunate to have more than a thousand participants from 41 countries (as of July 9), predicting the required numbers of lunches and dinners is extremely difficult. To minimize the amount of leftover food that will go to waste, please answer the questionnaire at:

https://www.t.kyoto-u.ac.jp/survey/ja/aihtc/food-saving

no later than July 25, 2014. <u>Those who kindly fill out the questionnaire will</u> receive a small token of our appreciation at the registration desk.

Smoking

Smoking is strictly prohibited anywhere other than in the designated smoking areas outside.

EventMobile app for IHTC

TripBuilder Media EventMobile

EventMobile is a mobile app for conferences that helps participants browse the conference schedule, check information about speakers, view floor maps, check exhibits, create customized schedules, received alerts from the conference office, and also connect with other participants.

Downloading the App

Enter <http://www.tripbuildermedia.com/apps/ihtc-15> in your mobile device's web browser. This link will automatically detect your phone type and access the appropriate page where you can download the app. Or, just snap the QR code & download the app now!

Login ID and Password

Only IHTC-15 participants can log in to EventMobile. Your ID and password will be sent to you by email after you complete the registration process. The ID and password are also printed on your name badge sheet. If you registered onsite or have forgotten your ID or password, please inquire at the registration desk.

To edit your information

Participants: To edit your profile on the Attendee List, tap the MyProfile icon on the main screen and then tap the Edit icon in the upper right corner.

Speakers & Exhibitors: As a speaker, you can edit your entry in the Speakers section of the app. As an exhibitor, you can edit your entry in the Exhibitors section of the app. You should have received an email from TripBuilder Media that includes a URL and login credentials to edit these data. Simply follow the instructions in the TripBuilder Media email to edit your data and create poll questions. If you have forgotten your ID or password, please inquire at the registration desk.

Wireless Network System

Wireless network service will be available in the conference area of the Kyoto International Conference Center. The network name and login code are printed on your name badge sheet.

Conference Proceedings

Proceedings on USB drive

The conference program and proceedings of the keynote and general papers will be distributed on USB drives.

Proceedings on Homepage

A special site on the conference homepage that has the conference proceedings will go live during the conference. You will be able to access the keynote and general papers from this site.

http://www.ihtc-15.org

A password is required to access this site and view the papers. The password is printed on your name badge sheet.

IHTC Digital Library (IDL)

The AIHTC and Begell House have agreed to establish an IHTC Digital Library (IDL). The IDL is an online archival library with an interactive web interface and advanced search engine for the use of active researchers and engineers. It will

General Information

contain past and future Proceedings of the International Heat Transfer Conferences held under the auspices of the AIHTC Thus, all papers presented will be uploaded and included in the IDL after IHTC-15. http://ihtcdigitallibrary.com/

Cover page —Gaifukaisei (Katsushika Hokusai)—

The picture on the cover page is a reproduction of an Ukiyo-e print of Mount Fuji. Ukiyo-e is a style of woodblock printing that first emerged in the late sixteenth century. Ukiyo-e are created using multiple woodblocks, each skillfully carved, inked with a different color, and sequentially printed to produce single images. This Ukiyo-e was made by Katsushika Hokusai, one of the most famous Japanese artists of the 18th century Edo-period. Hokusai is best known as the creator of the Ukiyo-e series "Fugaku Sanjurokei," meaning thirty-six views of Mount Fuji, and the Gaifukaisei image is included in this series. "Gaifu" means south wind and "Kaisei" means clear weather. The picture depicts the beloved mountainside, dyed red by the dawn light of the sun on a clear summer day, and is also known as "the red Mount Fuji."

Mount Fuji, or Fuji-san, is the highest mountain in Japan, at 3,776m. An active stratovolcano that last erupted in 1707–08, it was designated by UNESCO as a World Heritage Site in 2013. [http://www.mtfuji.or.jp/en/]

From the standpoint of thermo-fluid dynamics, lenticular cloud formations above Mt. Fuji are very famous and beautiful. You can enjoy spectacular images and descriptions of various cloud formations at the following site: 60 INSANE CLOUD FORMATIONS FROM AROUND THE WORLD [PICS] http://matadornetwork.com/bnt/60-insane-cloud-formations-from-around-the-wo rld-pics/

IHTC Logo

A special logo for the IHTC was authorized by the AIHTC on October 16, 2013, and introduced in 2014 for the first time since the conference was held, in 1951. The logo shown here offers a metaphorical expression of multi-modal

and multi-scale heat transfer phenomena. The center sphere with the small sphere on a ring stands for the sun and the earth, or a molecule with an orbiting electron, while the outer arcs represent flame, heat conduction, and radiation.

This logo is now used on the conference homepage, conference program, documents, USB drive, other related items, and by the IHTC Digital Library that Begell House has established.

Global Information The Greatest Heat Transfer on Earth How many people are aware of it? 400 Radiation received Radiation lost 300 Surplus Watts per square meter Deficit 200 100 Heat transfer Heat transfer NOt 30N ZON NOI 0 SOI 20S 30S 40S 90S 90S 90S Latitude

Comparison of the incoming solar radiation and outgoing terrestrial radiation.

J. R. Eagleman, *Meteorology, the Atmosphere in Action*, 2nd ed., Wadsworth Pub. Co. (1985).

Technical Program

From the "Choju Giga" (The Scrolls of Frolicking Animals) handed down for centureis at Kozanji Temple.

To presenters:

Please be sure to arrive at least 5 minutes before your session's starting time, and please inform the session staff of your arrival.

Only at the General Sessions:

The timing and duration of conference events is strictly controlled, using an automatic timer that runs through each session. This way, events in one room are synchronized with events occurring in other rooms. <u>Please obey the following limits.</u>

13 min.: presentation5 min.: discussion2 min.: transition

To chairpersons:

Please inform the session staff of your arrival prior to the start of the session.

Only at the General Sessions:

Please see the details in the instruction for the chairpersons distributed separately. Even if a "**no-show**" occurs, please **DO NOT** jump ahead of the schedule.

To questioners/commentators:

Please clearly identify yourself before asking your question or making your comment.

Floor Map

Schedule at a Glance

Mon	onday, 11	
8:00	A B1 B2 C1 C2 D E F G	H I J K
9:00	0 • Opening [8:40 - 9:10]	0
10:00	0 Plenary Lecture [9:10 - 10:10]	• 1
11:00		0 1
12:00	0 o KN01 KN02 KN03 KN04 KN05 Keynote [1	1:25 - 12:10j 0 1
13:00	0 • Lunch	• 1
14:00	0 Orsein EVP1 TPA FCV1 TTR1 BMA1 MTR1 PPE	MLT TPP1 CDS1 EES1 • 1
15:00		○ 1
16:00		
17:00		0 1
18:00	0 0 18:00	1
19:00	0 •	• 1

Wed	Inesday	, 13												
	Α	B1	B2	C1	C2	D	Е	F	G	Н		J	K	
8:00	8.20													-0
9:00	© session-	FBL3	TPF1	IPJ	HTE3			FCV6	MFP	NSM1	PMD1	RAD1	PLS	ю
10:00	° 10:20													0
11:00	e 10:30 session	PBL1	TPF2	RNE	HTE4			FCV7	ACR	NSM2	PMD2	RAD2	TEL	0
12:00	0 32													0
13:00	0				-	•			-					-0
14:00	0													-0
15:00	0													-0
16:00	0													-0
17:00	0													-0
18:00	0													-0
19:00	0													-0

Schedule at a Glance

Lunch

Closing [17:20 -], Farewell

Coffee Break

OPT NMM3 CND4 PMD6 CMB1 TMG2

NMT NMM4 FLM PMD7 CMB2 TMG3

13:00 0 12:50

14:00 0 52 15:00 •<u>14:50</u>

17:00 •<u>17:10</u> 18:00 •

16:00 •

19:00 •

15:10

PBL5 TPM1 CNV1 HTE8

PBL6 TPM2 CNV2 HTE9

3-letter Codes for General Sessions

	Air Conditioning and Defrigeration (1)
ACR	All Conditioning and Reingeration (1)
ADS	Adsorption and Desorption (1)
BIMA	Bio and Medical Applications (2)
CDS	Condensation (5)
CMB	Combustion (2)
CND	Conduction (4)
CNV	Convection (2)
CPM	Computational Methods (2)
ECS	Energy Conversion and Storage (1)
FFC	Electronic Equipment Cooling (3)
FFF	Energy Efficiency (2)
EES	Energy Environmental Systems (2)
	Evaporation Droplot/Spray/Liquid Film (2)
	Elow Beiling (2)
	Flow Dolling (3)
FCL	
FCV	Forced Convection (7)
FLM	Film (1)
GTB	Gas Turbine (1)
HEX	Heat Exchanger (4)
HPP	Heat Pipe (2)
HTE	Heat Transfer Enhancement (9)
INV	Inverse Problems (1)
IPJ	Impinging Jet (1)
MCV	Mixed Convection (1)
MFP	Materials and Foods Processing (1)
MIN	Measurement and Instrumentation (3)
міт	Molecular Transport (1)
MNF	Manufacturing (1)
MTR	Mass Transfer and Drving (2)
NCV	Natural Convection (3)
NMM	Nano/Micro Scale Measurement and Simulation (4)
NMS	NEMS/MEMS (1)
NMT	New Materials (1)
NSM	Numerical Simulation (2)
OPT	Optimal Control/Theory (1)
	Pool Boiling (6)
	Pleame (1)
	PidSilid (1) Deroue Medie (7)
	Polous Meula (7)
	Photon, Phonon and Electron Transport (1)
RAD	Radiation (4)
RINE	Renewable Energy (1)
SAI	Spray and Atomization (1)
SOL	Solar Energy (3)
IBF	Two-phase, Bubble Flow, Water Film (1)
TDY	Thermodynamics (3)
TEL	Thermoelectric Devices (1)
TMG	Thermal Management (3)
TPA	Two-phase, Application (1)
TPB	Two-phase, Boiling/Condensation (1)
TPF	Two-phase, Flow Behaviour (2)
TPM	Two-phase/Multiphase Flow (2)
TPN	Two-phase, Numerical Simulation (2)
TPP	Thermophysical Properties (4)
TPS	Two-phase, Spray/Droplet (1)
TST	Thermal Storage (1)
TTR	Turbulent Transport (2)

Plenary and Fourier Lectures

11th, Monday Room A 09:10 - 10:10 Plenary Lecture

Science of Scientific Advice

Hiroyuki Yoshikawa Director, Center for Research and Development Strategy, Japan Science and Technology Agency Past President of the University of Tokyo and the International Council of Science Japan

Abstract

As the most part of society is affected by scientific knowledge, the wisdom of its use is indispensable. The use contains various issues. As an example, heat is definitely a discipline in science, so scientists with special knowledge research the heat. Looking at the heat in society, however, we find it everywhere as complicated systems. In all artefacts such as machinery of various kinds it often plays the major role. Heat is essential for household, too.

Heat system of living beings is another which is to be admired. Thus, society is full of heat systems and the governance of all is now a high priority for security and sustainability; this requests the disciplinary mix even of fields other than heat. Then, who will care and govern it? Definitely government is obliged to do it. As politicians or civil servants are not specialists in heat, they can act correctly only when they receive right advices from scientists. In this lecture, this role of scientists will be discussed more generally to depict new scientists as a good advisor to government.

10:10 - 10:55 Fourier Lecture

Thermal Science and Engineering - From Macro to Nano in 200 Years

Avram Bar-Cohen

Distinguished University Professor, PhD President, Assembly for International Heat Transfer Conferences Department of Mechanical Engineering University of Maryland U.S.A.

Abstract

During the past 200 years thermal science and engineering has experienced a remarkable transformation of scale. Principles and theories that had been established in support of steam engine development and design, at the meter and centimeter scale, are now routinely applied to the design and optimization of nanoelectronic devices, at the micron and nanometer scale. This Fourier Lecture will briefly review the genesis and foundations of the heat transfer discipline and its formative years, continue with a recapitulation of the history of the Assembly for International Heat Transfer Conferences, and then delve into the evolution and "inward migration" of thermal packaging of electronics to illustrate this transformation of scale

Plenary Panel Session

14th, Thursday 15:50 - 18:10 Room A

"The Role of Thermal Science in Meeting Societal Challenges"

N. Kasagi Y.

Y. Bayazitoglu Y.

Y. Jaluria

D. Poulikakos P.

os P. Stephan

Moderator

Prof. Nobuhide Kasagi

Japan Science and Technology Agency The University of Tokyo Japan

Panelists

Prof. Yildiz Bayazitoglu

Rice University Department of Mechanical Engineering and Materials Science U.S.A.

Prof. Yogesh Jaluria Rutgers University Department of Mechanical and Aerospac

Department of Mechanical and Aerospace Engineering U.S.A.

Prof. Joon Sik Lee Seoul National University Department of Mechanical and Aerospace Engineering Korea

Prof. Dimos Poulikakos

Swiss Federal Institute of Technology in Zurich (ETH Zurich) Switzerland

Prof. Peter Stephan

Technische Universitat (TU) Darmstadt Germany

Abstract

Science and technology are helping to drive solutions to current and future global challenges. Economic progress in every community worldwide has meanwhile become increasingly interdependent with massive traffic of information and knowledge. Challenges related to ensuring sufficient food and water, natural resources, quality healthcare, and a sustainable environment for a growing population demand science, innovation and international dialogue. Addressing these challenges also depends upon discoveries emerging from the convergence of physical, life, engineering, and social sciences in innovative ways that are most useful to society.

J. S. Lee

We, as a member of the world science community, are faced to several important questions. What roles should scientists and engineers of thermal science play in resolving various societal issues and leading further balanced societal development? How research themes should be designed and set forth in order to respond to societal wishes while keeping spontaneous motivation of researchers? How those issues and research themes should be tackled with for more productive and innovative outcomes?

This panel is focused upon these important questions by inviting leading scientists. Some of the concrete issues are research on research planning, public funding and its usage, promotion of research collaboration, linking research outcomes to innovation, human resource development, norm of science, and scientific advice to policy, to name a few. Forward-looking discussions empowered by international leaders of different views will hopefully shape the role and responsibility of thermal science and engineering in the years to come.

11th, Monday

Keynote (11:25 - 12:10)

Room B1	Room B2	Room C1
tephan Kabelac elmut Schmidt University, Germany	Pedro Coelho University of Lisbon, Portugal	Charl G. du Toit North-West University, South Africa
CN01 Controlling Hydrodynamics, Heat Transfer and Phase Change in Thin iquid Films and Drops Dr. Tatiana Gambaryan-Roisman echnische Universität Darmstadt	KN02 Multi-scale Interfacial Phenomena and Heat Transfer Enhancement Prof. António L. N. Moreira University of Lisbon, Portugal	KN03 Heat Transfer in Tubes in the Transitional Flow Regime Prof. Josua P. Meyer University of Pretoria, South Africa
Germany	Abstract	
bstract Many technological applications in energy and process idustry rely on transport processes and phase change in liquid ims and drops. These processes also play an important role in abrication of patterns on substrates, for example, by inkjet printing r dip coating. Controlling hydrodynamics and transport processes i liquid films and drops is an important challenge in the variety of pplications. Most of the efforts towards the achievement of this oal have been focused on modification of substrates in contact ith films and drops, primarily through using structured wall urfaces. In the present paper an overview of the phenomena iggered by surface structuring and by alternative methods of ifluencing films and drops is given. In particular, hydrodynamics and heat transfer of films over substrates with spatially varying hermal properties are considered.	Abstract Recent inventions in micron- and submicron- scale systems driven by the rapidly expanding capability of micromachining technology have shown tremendous benefits in flow processes in many established and emerging fields of growing economic importance and great potential for innovation. The detailed understanding of the governing mechanism are at the heart of realizing many future technologies, but poses several new challenges relating multidisciplinary scientific areas: surface energy becomes increasingly important at the micron- and submicron- scales and processes turn out to be largely affected by the physical geometry of the domain and the molecular structure of the surface. Interfacial transport phenomena integrate information from microfluidics, surface chemistry, biological sciences, micro fabrication, to develop research dedicated to improve an in-depth understanding of the basic physics in the above fields, as well as to provide useful information for direct applications. It refers to mass, momentum, energy and entropy transfer across and along fluid/fluid and fluid/solid interfaces, including the interfacial kinetics in multiphase combustion systems. In this context, wettability becomes an important influential parameter which can be changed by chemically treatment, patterning, or only different material deposition onto the surface.	Abstract Not much work has been done in the transitional flow regim in tubes where the flow changes from laminar to turbulent flow This region has become more important with the introduction of enhanced tubes as they give a good compromise between hear transfer and pressure drop, and therefore, more data is needed for design purposes. The purpose of this keynote paper is to give a overview of the state of the art, to present some of the latest work to discuss it critically and to identify gaps and opportunities for more work that needs to be done. Challenges with experimenta work and methodologies will also be highlighted. The state of th art is discussed in terms of the definition of transition, differer heating and cooling boundary conditions, the effect of relative tub roughness, different types of geometries with specific reference t enhanced tubes, and the effect of different types of fluids o transition including nanofluids. It is hoped that this paper will b used as a guideline for future research.
	tailoring special lyophobic and lyophilic mixed surfaces with great potential for miniaturized heat transfer devices and are currently driving a renewable research interest for both, experimental and theoretical, studies in multi-scale transport phenomena. This paper intends to review the interfacial transport phenomena from the perspective of their potential to enhance both, the heat transfer and the critical heat flux, in multi-scale heat transfer applications,	

Keynote (11:25 - 12:10)

11th, Monday

Room C2	Room D	Room E
Room C2 Luiz Fernando Milanez University of Campinas, Brazil KN04 Heat and Mass Transfer in Wax Deposition in Pipelines Prof. Angela O. Nieckele PUC-RIO, Brazil Abstract Wax deposition continues to be a critical operational problem	Room D	Room E Shigenao Maruyama Tohoku University, Japan KN05 Engineering Approach to Irreversible Electroporation Prof. Hiroshi Takamatsu Kyushu University, Japan Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Imag
in crude oil pipelines operating in cold environments. Therefore, accurate prediction of wax deposition rates and deposited wax spatial distribution is invaluable information for the design of subsea lines. Unfortunately, wax deposition is a complex process for which the mechanisms are still not fully understood. The present paper is part of an ongoing research effort directed at identifying the relative importance of the mechanisms responsible for paraffin deposition. The research program encompasses experiments at the laboratory scale and numerical simulations. The experiments employ test sections with simple geometries with well-defined and controlled boundary and initial conditions, using simple oil-paraffin laboratory solutions, and with known transport properties. The results obtained from these controlled experiments are then compared to numerical simulations that try to faithfully reproduce the experimental conditions. Contrary to the experimental studies, the simulations studies permit that different models proposed for deposition mechanisms. The present paper focus on the comparison of measured and predicted laminar and turbulent deposition data obtained under controlled conditions with numerical simulations of the conservation equations of mass, momentum, energy and concentration. Based on the experimental evidences, different with experimental data. However, the transient evolution of the depositi was not well capture, indicating		therapy to treat abnormal tissues by applying a high voltage between the electrodes inserted in the tissue. Since the cell membrane exposed to the potential difference above a certain threshold is permanently disrupted, the IRE has a potential to necrotize cells without causing damage to the extracellular matrix (ECM), which is favorable for tissue regeneration during healing. However, determining an optimal condition of electrode configuration and applied pulses is critically important because an underdose of electrical pulses makes abnormal cells remain alive, while an overdose induces Joule heating of the tissue that causes thermal damage to the ECM. Studies from engineering point of view are therefore of great help to successful IRE. The present keynote lecture is a review of the authors' work associated with the IRE which includes a three-dimensional numerical simulation to estimate electric field and temperature distribution around electrodes, evaluation of cell destruction and thermal injury, detection of ultra-short temperature rise using a thermo-responsive ink, detection of denaturation of protein using Raman spectroscopy, and the IRE experiment with threedimensional cell culture model.

12th, Tuesday

Keynote/Award (08:40 - 09:25)

Room B1	Room B2	Room C1
Dimos Poulikakos (Gad Hetsroni	Neima Brauner
Swiss Federal Institute of Technology in Zurich, Switzerland	Israel Institute of Technology, Israel	Tel Aviv University, Israel
KN06 Recent Advances in On-chip Cooling Systems: Experimental Evaluation and Dynamic Modeling Prof. John R. Thome Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland	KN07 Heat Transfer in High-temperature Volumetric Solar Receivers Prof. Abraham Kribus Tel Aviv University, Israel	KN08 Transfer Processes in Vortex Flow Prof. Sergey Alekseenko Russian Academy of Sciences, Russia
Abstract Extensive work on flow boiling in microchannels with the aim of cooling of electronics has been undertaken in the past decade. With this knowledge in hand, the next step is to develop detailed, accurate and validated simulation codes for steady-state and ransient operation of (i) the entire thermal package (micro-channel evaporator, its inlet and outlet ports, the thermal netrface material and the electronic chip), (ii) the flow distribution o multiple chips to be cooled in parallel, and (ii) the rest of the cooling system (condenser, accumulator, driver and controller). First of all, the experimental results reported here will focus on controllability of the cooling systems under conditions of steady-state, transient, balanced and unbalanced heat loads on wo parallel pseudo-chips to mimic the real operation of a server blade. The results show that the experimentally evaluated systems are highly effective cooling solutions, providing significant reductions in cooling energy consumption when compared with current air-cooling systems, and guaranteed high uniformity and ow levels of the multiple chips' temperatures. Then, three different scales of simulation codes of the wo-phase on-chip liquid pump loop are described: (i) thermal cooling package of one CPU, (ii) grouping of multiple thermal backages operating in parallel, and (iii) the entire two-phase cooling loop with flow controls. Simulations are presented to llustrate the features and capability of these codes and to provide evidence of the validity of using two-phase on-chip cooling as an effective green electronics cooling technology.	Abstract High conversion efficiency is key to the success and competitiveness of solar thermal power plants, and can be achieved with cycles based on gas turbines and combined cycles that may reach around 30% solar-to-electricity efficiency. This requires the difficult task of heating air with solar radiation to over 1,000°C for the gas turbine inlet. Volumetric receivers made from porous ceramic structures can reach these temperatures but currently their radiation-to-heat conversion is low, typically around 70% rather than the desirable range of over 90%. Modeling of radiative and convective heat transfer in a volumetric receiver enables analysis and optimization of the various geometric and material-dependent properties to achieve a significant performance improvement. The model represents the porous medium as an effective or averaged medium with homogeneous properties. A parametric study of the volumetric receiver design. Optimization of geometry (higher porosity and larger characteristic pore diameter) is insufficient, and improved efficiency requires a significant increase in convection heat transfer beyond the normal behavior of ceramic foams, and a reduction in thermal conductivity. Finally, spectral selectivity of the absorber material can also help in further increase of efficiency, in contrast to the common opinion that it is effective only at low temperatures.	Abstract Fundamentals of vortex dynamics in application problems of power engineering are presented in the presentation. Recent advances in diagnostics and simula vortex flows, multiphase media, flames and heat and transfer processes are presented. The basic vortex-based methods of transfer processes are considered; they are into the passive (flow swirl, developed heat exchange s with fins, holes and microrelief) and active (mixing, p forcing) methods. Examples of vortex technology applica power engineering, including heat exchangers, burners, fu combustion chambers, hydroturbines and multiphase appa of cyclone and condenser types, are described. In some te applications several vortex devices and methods are simultaneously, for instance, in coalwater fuel com technology. The conclusions addressing efficiency of applic vortex devices (methods) in different power engine challenges are made.

Keynote/Award (08:40 - 09:25)

12th, Tuesday

	Room C2	Room D	Room E
	Katsunori Hanamura	Masanori Monde	Sebastian Volz
8:40	KN09	Award Lecture	KN10
	Nanoscale Thermal Transport in Thermoelectrics Prof. Junichiro Shiomi The University of Tokyo, Japan	The Nukiyama Memorial Award Heat Transfer at Interfaces Prof. Gang Chen Massachusetts Institute of Technology, USA	Experimental Inverse Problems: Potentials and Limitations Prof. Denis Maillet University of Lorraine, France
	Abstract We investigate nanoscale thermal transport in thermoelectrics by developing methodology to calculate multiscale phonon transport in crystals. With the anharmonic interatomic force constants calculated from firstprinciples, accurate phonon transport calculations was realized by using the lattice dynamics or molecular dynamics methods. The calculations have successfully reproduced and predicted lattice thermal conductivity of various materials in forms of not only single crystal but also solid solutions, where molecular dynamics method is particularly useful to capture local variation of mass and force fields. With the capability to calculate phonon transport properties in mode-dependent fashion, influence of nanostructures on lattice thermal conductivity was estimated by a simple boundary scattering model or more rigorously by solving the phonon Boltzmann transport equation with Monte Carlo method. This multiscale phonon transport calculation is expected to help us understand and design bulk nanostructured thermoelectric materials.	Abstract Research over the past three decades in understanding micro/nanoscale heat transfer phenomena and mechanisms has significantly broadened our knowledge base. Future vitality of the field hinges on further advances in the fundamentals and their application to real world problems. This talk will use examples to illustrate significant opportunities in thinking heat transfer at boundaries. At the fundamental level, we witnessed the blurring of the boundaries among heat transfer, physics, and chemistry. Examples will be given including ballistic and coherent heat onduction in solids, and the convergence of heat conduction and thermal radiation when the two surfaces are brought near contact. New insights on heat transfer mechanisms led to opportunities is used as high thermal conductivity plastics and improved thermoelectric energy conversion materials. Great opportunities exist in taking the fundamental understandings and advanced materials to develop innovative systems. Examples will be giving including solar steam-generation and thermoelectric energy conversion.	Abstract Techniques for solving inverse problems as well as their applications are currently rapidly developing in all the different domains of physical sciences and particularly in Heat Transfer. These techniques are usually developed by applied mathematicians, statisticians and signal processing specialists. Experimentalists desiring to go beyond traditional data processing techniques for estimating the parameters of a model with the maximum accuracy feel often ill-prepared in front of inverse techniques. This paper is devoted to the presentation of the common methodology that can be used by a heat transfer specialist in order to solve either a parameter estimation problem (thermal characterization of a material for example) or a function estimation problem (estimation of a transient heat flux at the front face of a wall for example), starting from transient temperature measurements inside or on the external boundaries of the physical system. Once this common methodology shared by specialists of measurement inversion techniques, modeling techniques and experimental techniques, a very wide variety of tools (analysis of the sensitivity matrix, variance-covariance matrix of estimates, regularization and Bayesian techniques) are now available in order to avoid biases at different levels of this kind of involved task.
			19

12th, Tuesday

Keynote (13:00 - 13:45)

	Room B1	Room B2	Room C1
	Theo H. van der Meer	Michael Jensen	Bengt Sundén
	University of Twente, The Netherlands	Rensselaer Polytechnic Institute, USA	Lund University, Sweden
13:00	KN11	KN12	KN13
	Decoding Fundamental Boiling	The Role of Heat Transfer in Sunlight	Influence of Drop Shape and
	Processes in Micro Domains	to Fuel Conversion Using High	Coalescence on Dropwise
	- Experimental Challenges and	Temperature Solar Thermochemical	Condensation over Textured
	Opportunities	Reactors	Surfaces
	Prof. Yoav Peles	Program Director James F. Klausner	Prof. Krishnamurthy Muralidhar
	Rensselaer Polytechnic Institute, USA	University of Florida, USA.	Indian Institute of Technology Kappur.
	Abstract Flow boiling in microchannels has been extensively studied since the mid-1990. Accurate measurements at the micro scale are very demanding, and as a result, fundamental knowledge	Abstract The synthesis of fuel from sunlight is a research area that has attracted significant attention in recent years due to the potential of providing a fully sustainable pathway for transportation. Due to the	India Abstract The authors of the present study have developed a mathematical model of dropwise condensation on the underside of horizontal and inclined surfaces. The condensation process starts

since the mid-1990. Accurate measurements at the micro scale are very demanding, and as a result, fundamental knowledge pertinent to boiling heat transfer in diminishing length scales is severely lacking. The main obstacles include significant conjugate conduction/convection processes and the lack of high frequency synchronized temperature/flow visualization measurements.

Here we report on a new hybrid numerical-experimental method that overcomes major obstacles inhibiting progress pertinent to this important field. A new parameter, termed the S coefficient, which allows accounting for the conduction process, and therefore, isolating the convection process, is introduced and numerically calculated. It is then demonstrated on three high speed experimental measurements. Surface temperature with micron size thermistors are obtained at high frequencies (O(10kHz)); boiling events are simultaneously visualized and used in conjunction with transient temperature measurements and the S coefficient to infer processes controlling heat transfer in a microchannel.

It was shown that high thermal conductivity substrates typically used to form microchannels, such as silicon and copper, are not suitable for elucidating fundamental transient processes in microchannels. Low thermal conductivity materials, such as Pyrex and Benzocyclobutene (*BCB*), are more applicable. However, this can only be done through careful numerical analysis of the conduction heat transfer within the solid structure used to form the microchannel. high energy density and the existing global infrastructure for fuel transport and handling, the storage of solar energy as a fuel is a superior concept. The cost effective, solar thermochemical production of Syngas, using non-volatile metal oxide looping processes as a precursor for clean and carbon neutral synthetic hydrocarbon fuels, such as synthetic petroleum, is the overarching goal of a number of research groups worldwide. The high temperature solar thermochemical approach uses water and recycled CO₂ as the sole feed-stock and concentrated solar radiation as the sole energy source. Thus, the solar fuel is completely renewable and carbon neutral. Highly reactive, high surface area metal oxide porous structures are used to enable CO₂ and water splitting for the production of Syngas. Two critical issues that drive the reaction conversion efficiency are chemical kinetics and heat and mass transport within the solar reactor. This lecture will consider the interplay between chemical reaction kinetics and thermal transport within the solar thermal chemical reactor. A framework for modeling the very complex multimode thermal transport within reactive porous structures will be described. The concentrated solar thermal radiant transport into the chemical reactor is simulated using a Monte-Carlo ray tracing model. Heat transport within the reactive porous structures. including conduction, convection, radiation, and chemical reactions, is simulated using a thermal lattice Boltzmann model. The model is used to guide reactor scaling and appropriate operating conditions for efficient solar fuel production. The results suggest that new material synthesis that enables thermal reduction at temperatures below 1100°C can enable transformative solar to fuel conversion technology.

with nucleation, proceeding to growth and coalescence, followed by the movement of unstable drops that initiates fresh nucleation on exposed portions of the substrate. From the distribution of drops of various sizes, the instantaneous surface averaged heat transfer coefficient and wall shear stress are computed. The largest drop diameter achieved depends on gravitational stability with respect to the interfacial forces at the three-phase contact line. Drop instability controls the periodicity of the condensation process and so, the heat transfer coefficient and wall shear stress. The developed model (i) simplifies drop shapes as spheroidal and (ii) assumes droplet coalescence process as instantaneous. To examine the consequence of these two simplifications on the overall dropwise condensation process, the sensitivity of the heat transfer coefficient and wall shear stress to drop deformation and coalescence has been studied in the present work. The shape of the drop on the underside of an inclined surface has been determined using a software tool based on the principle of minimization of potential and surface energies. Velocity and timescales of droplet coalescence are experimentally determined from high speed imaging. With the drop shape correctly determined, results show that improved wall shear stress and heat transfer coefficient are both smaller but the overall integrated predictions are not severely sensitive to these additional details. With coalescence, large heat fluxes attained for short time duration do not contribute much to the surface-averaged value. On the other hand, large wall shear stresses are momentarily created and these can impact the life of surface coatings.

Keynote (13:00 - 13:45)

12th, Tuesday

		RUUME
Xing Zhang Tsinghua University, China	António Luis Moreira University of Lisbon, Portugal	Helcio Orlande Federal University of Rio de Janeiro, Brazil
Xing Lang Tsinghua University, China KN14 Entransy Theory for the Analysis and Optimization of Thermal Systems Prof. Zeng-Yuan Guo Tsinghua University, China Image: State St	Antonio Luis Moreira University of Lisbon, Portugal KN15 Flow Boiling Heat Transfer and two-Phase Flow in Microgravity Dr. Giuseppe Zummo ENEA C.R. Casaccia, Italy Abstract New boiling heat transfer can provide high heat transfer rates due to latent heat transportation. Its possible use is therefore potentially important to reduce size and weight of cooling systems in space platforms and satellites. A comprehensive knowledge is also important for the safe operation of existing single-phase systems in case of accidental increase of heat generation rate. For space applications and appropriate design of components accommodating flow boiling heat transfer, it is important to understand the influence of microgravity conditions on forced convective boiling heat transfer. The number of existing researches on flow boiling in reduced gravity is very small due to large heat loads required and reduced available room in a 0-g apparatus for experiments, as well as complexity of the experimental facility for microgravity discussing flow pattern, heat transfer coefficient, critical heat flux, with a particular emphasis to the recent experiments carried out at ENEA. The experiments were carried out at low gravity during the ENEA. The experiments were carried out at low gravity during the ENEA. The experiments and vapor bubble parameters at normal and at zero gravity.	Federal University of Rio de Janeiro, Brazil KN16 / Award Lecture The William Begell Medal Ways Toward Targeted Freezing or Heating Ablation of Malignant Tumor: Precisely Managing the Heat Delivery inside Biological Systems Prof. Jing Liu Chinese Academy of Sciences, China Abstract The minimally invasive freezing or heating ablation of tumor, commonly known as cryosurgery or hyperthemia, is increasingly adopted as an important weapon to attack cancer disease. A most critical issue impeding the success of such physical therapies lies in the precise delivery of external heat or cold to the target tissues, which however still remained a tough challenge so far. This article aims to synergistically discuss the hyperthemia and cryosurgical ablation modalities together by way of their common temperature variation basis. It is dedicated to comprehensively interpret the clinics oriented complex multi-scale bioheat transfer issues either with or without phase change and summarize the author lab's efforts toward a highly conformal ablation in order to effectively overcome the ubiquitous shortcomings facing conventional strategies. The topic covers treatment planning, precise management of heat transport from cell to organ level as well as development of therapeutic materials, and devices therein. Critical factors to result in irregular bioheat transfer were briefly outlined. Selective administration of multi-array heating or freezing probes or their combinations either in space or temporal category to realize desired conformal ablation were illustrated. Further, nanotechnologies mediated hyperthermia or cryosurgery was especially evaluated. In addition, medical images such as MRI guided ablation including nanoparticles enhanced heat transfer to tackle irregular tissues or discrete vessels were discussed. Lastly, several late
H <i>A</i> A A A A A A A A A A	Isinghua University, China KN14 Entransy Theory for the Analysis and Optimization of Thermal Systems Prof. Zeng-Yuan Guo Tsinghua University, China Abstract Meta efficiencies of various kinds of thermal systems as entropy theory is not always suitable for optimizing heat transfer problems, such as the derivation of Fourier's law of heat conduction, volume to boint heat conduction, and counter-flow heat exchangers, which ead to the development of the new quantities of entransy, entransy dissipation and the corresponding optimization principle. Entransy is of the nature of "potential energy" because it is in fact he simplified expression of potential energy of thermomass, which describes the hear telease capability during a time period. Unlike the traditional definition of thermal resistance, the entransy dissipation thermal resistance (EDTR) is defined, which may describe the irreversibility and optimization of various heat transfer processes not related to heat-work conversion. A temperature-heat orporesses not related to heat exchanger couple, a single stream heat exchanger network and chemical processes with recuperation echnologies. Comparisons of the optimization of different thermal systems, including a heat exchanger couple, a single stream heat exchanger network and chemical processes with recuperation echnologies. Comparisons of the optimized results for different hermal systems indicate that the minimum EDTR principle, rather han the minimum entropy generation principle, should be used to optimize the thermal systems without heat to work conversion. Finally, a global optimization method is then given for thermal systems with the EDTR as an intermediate parameter with applications to a building central chilled water system, a district heating network and a spacecraft heat exchanger network.	 Isingnua University of Lisbon, Portugal University of Lisbon, Portugal University of Lisbon, Portugal With Flow Boiling Heat Transfer and <i>two-hase Flow in Microgravity</i> <i>Bis Case Case Case Case Case Case Case Cas</i>

14th, Thursday

Keynote (13:50 - 14:35)

	Room B1	Room B2	Room C1
	Subhash Mishra Indian Institute of Technology Guwahati, India		Steven Armfield The University of Sydney, Australia
13:50	KN17 Heat Transfer Challenges in Novel Power Cycles for Concentrating Solar Power Prof. Pradip Dutta Indian Institute of Science, India		KN19 Correct Representation of Flow and Heat Transfer Fields Prof. Gordon D. Mallinson The University of Auckland, New Zealand
	Abstract The demand for distributed and scalable solar thermal power plants necessitates the use of novel power cycles which are efficient and cost effective at low to medium scales. For regions pertaining to high insolation intensities, the supercritical CO ₂ based Brayton cycle is now recognized to be a suitable candidate, having potential to yield high efficiencies at moderate operating temperatures of about 700°C. However, development of components for such power cycles, such as solar receivers, recuperators and storage systems involve significant heat transfer challenges which are highlighted in the present paper. For moderate insolation intensity areas, the Organic Rankine Cycle (ORC) is found to be suitable for multi-scale operation. However, high efficiency ORCs require high temperature organic working fluids which are generally flammable, thus requiring the development of novel power cycles with stable organic fluid mixtures. There are challenging heat transfer issues with the design of heat exchangers with these organic fluid mixtures, which are also discussed and highlighted in the present paper.	<image/>	Abstract The correctness of methods used to visually represent numerically sampled heat transfer vector fields is considered from two perspectives, accuracy and the ability to correctly portray the properties of the fields. The sources of errors in commonly used algorithms are discussed and their effects illustrated for natural convection flows. In particular the algorithm most usually used in CFD visualisation packages is demonstrated to produce unrealistic visualisations, whereas algorithms that use interpolations derived from scalar and vector potentials do not. Methods of generating these potentials, via the Helmholtz theorem, are applied to conduction and convection heat fluxes together with the energy transport vector. The derivation of a simple method that obviates the need to explicitly apply heat flux boundary conditions during a post processing stage has the potential to encourage more widespread use of potential based methods. Examples show how vector fields with non-zero divergence can be visualised using these methods and some, such as the conduction heat flux field, provide new interpretive visualisations of heat transfer processes.

Keynote (13:50 - 14:35)

14th, Thursday

	Room C2	Room D	Room E
		Leonid A. Dombrovsky Russian Academy of Sciences, Russia	John R. Thome Ecole Polytechnique Federale de Lausanne, Switzerland
1:	BESO IHTC SINCE 1951	 KN20 Volumetric Laser or Solar Heating with Plasmonic Nanoparticles Prof. Yildiz Bayazitoglu Rice University, USA. Abstract Over the past two decades, much effort has been focused on developing plasmonic nanoparticles, not only by means of new methods but also by using new materials to allow absorption of the maximum amount of energy at a given wavelength by laser or solar light, depending on their size, shape and composition. These plasmonic nanoparticles have many uses from biomedical to electronic applications. Here we review their progress as related to assisting the increase in localized temperature of the medium by means of laser or solar energy. A brief discussion of solid nanosphere, nanodisc, nanoshell, nanorod, nanobelt and nanocage nanostructures and their optical properties is provided. Selected groups of nanoparticle as applied to volumetric laser and solar heating applications are also discussed. Finally a single plasmonic nanoparticle use for local laser heating for cancer therapy, and for solar energy steam generation for power generation, distillation and sterilization are presented. 	 KN21 The Rational Nanostructuring of Surfaces for Extreme lcephobicity in Nature and Technology Prof. Dimos Poulikakos ETH Zurich, Switzerland Abstract Schwarz Schwarz Schwa

14th, Thursday

Keynote (14:50 - 15:35)

Room B1	Room B2	Room C1
Yasuyuki Takata Kyushu University, Japan	Denis Maillet University of Lorraine, France	Patrick H. Oosthuizen Queen's University, Canada
KN22 DNS and Advanced Laser Diagnostics of Turbulent Combustion Prof. Mamoru Tanahashi Tokyo Institute of Technology, Japan	KN23 <i>Transfers in Porous Media</i> Research Director Michel Quintard Institut de Mécanique des Fluides de Toulouse, France	KN24 Transport and Mixing Mechanisms in Littoral Waters Induced by Absorption of Radiation Prof. John C. Patterson University of Sydney, Australia
Abstract Detailed understanding of turbulent combustion phenomena is very important to develop high efficiency combustors which contribute to resolve global environmental issues. Since turbulent combustion involves strong interactions between turbulence and combustion reactions, highly-sophisticated measurement techniques and numerical simulations both for fluid motion and flames are required. In this talk, current state and perspective both of laser diagnostics and direct numerical simulations (DNS) of turbulent combustion are provided. For laser diagnostics, state-of-the-art stereoscopic particle image velocimetry (PIV) for turbulence research is combined with advanced planar laser induced fluorescence (PLIF) techniques such as simultaneous multi-radicals highspeed PLIF and stereoscopic PIV are presented and investigations on local flame structure, global/local flame dynamics and three-dimensional flame structures are surveyed. As for DNS of turbulent combustion, after presenting recent progress in combustion DNS, possibility of perfect simulations of IC engine is shown based on the perspective of DNS of turbulent combustion.	Abstract Modelling heat transfer in porous media requires to take into account multiple-scale aspects inherent to porous media structures. Several methodologies have been developed to upscale the equations at a lower-scale and to obtain upper-scale models as it is outlined in a brief review based on a simple heat conduction example proposed in the first part of this paper. The more general and classical problem of heat transfer in porous media is reviewed in this paper with the emphasis on the fact that different behaviours and hence different models emerge at a given macro-scale, depending on the interplay of the various characteristic times and lengths characterizing the problem. Various classes of models are discussed and their relationships outlined. Extensions to more complicated problems of heat transfer in porous media are discussed: coupling with mass diffusion, effect of heat sources, radiation, boiling, etc.	Abstract This paper provides a bibliographical review on the unsteady natural convection in littoral waters induced by daytime radiative heating and further addresses recent and ongoing related investigations. The flow under consideration is an internally heated convection with an imposed boundary forcing. The direct absorption of the incoming radiation forms a stable thermal stratification, whilst the residual radiation reaching the bottom is absorbed and released back to the water body as a boundary flux, forming a potentially unstable thermal stratification adjacent to the bottom surface. Consequently, the differential heating intrinsically imposed by the varying topography drives the cross-shore circulation (i.e. horizontal convection), and the thermoconvective instability of the potentially unstable bottom thermal boundary layer induces the depthwise circulation (i.e. vertical mixing) in the form of rising plumes. Investigations have been widely conducted via analytical, experimental, numerical and scaling approaches to characterise the flow and stability mechanisms and their dependences on controlling parameters.

Keynote (14:50 - 15:35)

14th, Thursday

	Room C2	Room D	Room E
		Josua P. Meyer University of Pretoria, South Africa	Anton A. van Steenhoven Eindhoven University of Technology, The Netherlands
14:50	и Колонович Колонови С С С С С С С С С С С С С С С С С С С	KN25 Investigation of Nanoscale Heat Transfer with Highly Versatile Phase-locked Thermoreflectance Prof. Pamela M. Norris University of Virginia, USA. Abstract The precision of Time Domain Thermoreflectance (TDTR) measurements is often limited by the small data signal relative to a larger background noise. In order to reduce this noise, we propose the implementation of low-cost digital logic circuitry to phase-lock the optical detection scheme with the source laser frequency. Materials with small coefficients of thermoreflectivity, for example, yield a low signal, while experimental conditions, such as low modulation frequencies, may yield large noise levels. Either case leads to low signal-to-noise results preventing precise TDTR measurement results. The digital phase-locking procedure discussed in this paper can increase the signal-to-noise ratio by nearly a factor of four, thus making a wider array of measurements possible. The importance of a phase-locked system is discussed experimentally and theoretically and the design of the digital circuit is described. Thermoreflectance measurements of AI and Ni on Si are presented to display the significant improvement in the results after the phase-locking procedure is conducted.	KN26 Multiscale Modeling Approaches of transport Phenomena in Fuel Cells Prof. Bengt Sundén Lund University, Sweden Abstract Modeling is of key importance in fuel cell development beyond the current-state-of-the-art because it is beneficial to understand the mechanisms of various interacting phenomena and effects on the cell performance. It is also hard to measure the local parameters inside fuel cells, particularly inside the small scale functional materials. Modeling and simulation of charge transfer and electrochemical performance are critical to enable optimization of the geometry and performance. For macroscale modeling, the micro- and nano-structure related properties defining a porous media, e.g., the porosity and tortuosity and the specific area available for surface reactions are required. Thus the coupling of models valid at various scales is important for continued progress in the development of fuel cells. Within this paper both macroscale and micro-/nanoscale modeling approaches are presented for the fuel cell types SOFC (solid oxide tuel cell) and PEMFC (polymer electrolyte membrane fuel cell). In particular the electrodes, electrolyte and unit cells are considered. Some relevant results are provided.

15th, Friday

Keynote/Award (10:55 - 11:40)

Room B1	Room B2	Room C1
ing Zhang singhua University, China	Ulrich Gross TU Bergakademie Freiberg, Germany	Leonid A. Dombrovsky Russian Academy of Sciences, Russia
N27 Recent Studies on Surface Roughness and Wettability Effects in Pool Boiling rof. Ping Cheng hanghai Jiaotong University, China	KN28 Flow Structures and Heat Transfer in Submerged and Free Laminar Jets Prof. Reinhold Kneer RWTH Aachen University, Germany	KN29 Heat and Mass Transfer Processes in the Fischer-Tropsch Reactor Prof. Igor Derevich Bauman Moscow State Technical University, Russia
Abstract Recent analytical, numerical and experimental studies on oughness and wettability effects in pool boiling from horizontal eated surfaces are summarized in this paper. Measurements on nucleation bubble density, bubble departure diameter, departure requency, heat transfer coefficient, and critical heat flux (CHF) in ool boiling from hydrophilic heated surfaces with micro-structures micro-pillars and micro-cavities) and nanostructures (nano wires ind nano cavities) are compared. Thermodynamic analyses ased on changes in Gibbs free energy and availability are resented, and wettability and microstructures effects on nucleation radius, nucleation temperature and nucleation heat flux re illustrated. A recent critical heat flux model based on a force alance on a bubble, with the wicking force in the microstructures ind distortion of critical wave length taken into consideration, is hown to be in good agreement with experimental data. Lattice foltzmann simulation results for bubble nucleation, growth and leparture from cavities on a heated horizontal surface with various ontact angles in pool boiling are presented.	Abstract Impinging jets are central to a large amount of industrial processes and applications, and as such have been investigated extensively. Despite this fact, review of the literature shows that a comprehensive description for the flow and heat transfer of the basic underlying laminar single-jet case has not been given. Thereby the present study attempts to collect the understanding gained by previous studies, together with that obtained in recent studies by the authors, in a logical manner (following the flow), in order to formulate such a description. While not necessarily complete, more complex aspects such as turbulence, confinement and dissipation are not addressed, the present study takes a major step towards a unified description of this fundamental flow-configuration.	Abstract Lecture is devoted to important scientific problems association with synthesis of artificial oil. It will be discussed the follow achievements. Methods for modelling thermodynamic equilibri in a multicomponent system of liquid, solid and gaseous synth products are developed. These methods are based on more ideas of nonequilibrium thermodynamics and statistical physical calculated on the base of system of ordinary differential equation that minimize the Gibbs energy of multicomponent mixture. Due the absence of database on thermophysical properties of solution of hydrocarbons with large number of carbon atoms the methor of modelling the required properties were developed. On the bi- of Ergun's vacancy approach semi-empirical model of viscosition hydrocarbon mixtures in the liquid and gaseous phases in a transperiod of temperatures, pressures and concentrations is propor Questions connected with occurrence of temperature concentrations auto-oscillations within catalyst granules exothermic synthesis reactions are discussed. Based on more methods of stochastic processes various scenarios leading thermal explosion of catalyst granules with internal heat refer were studied. In the present paper theoretical method based probability density function of random temperature of granules incutuating temperature of synthesis products is attracted. Based on solving the system of stochastic ordinary differential equation fluctuating temperature of products is designed. Aerodynar and mass transfer in a long microspore of structured synthe- reactor was considered.

Keynote/Award (10:55 - 11:40)

15th, Friday

	Room C2	Room D	Room E
	Sung Jin Kim	Masahiro Kawaji	
40.55	Korea Advanced Institute of Science and Technology, Korea	The City College of New York, USA	
10:55	KN30 Performance Improvement of PEM Fuel Cell with Enhanced Heat and Mass Transport by Flow Pulsation Prof. Min Soo Kim Seoul National University, Korea	Award Lecture The Donald Q. Kern Award Flow Physics and Heat Transfer for Jets in Crossflow-Applications in Turbine Cooling" Prof. Sumanta Acharya National Science Foundation, USA Louisiana State University, USA	
	Abstract The addition of oscillation effect into a laminar flow stream has been well documented to increase the effective heat and mass transport in the open literatures. The fuel cell system, especially a proton exchange membrane (PEM) fuel cell also consumes the hydrogen at the anode and the oxygen at the cathode to produce electricity in the laminar and humid condition, producing water at the cathode after the reaction. Hence, the proper water and fuel management is a key factor to operate the fuel cell stably and efficiently. In this study, assuming that the velocity profile, concentration profile and pressure gradient along the channel have sinusoidal motion, we investigate numerically the basic characteristics of pulsating flow and effective mass diffusivity with respect to the frequency and the amplitude as parameters. Sequentially, we experimentally observe the acceleration of the water removal along the channel and the enhancement of the oxygen diffusion rate through the gas diffusion layer caused by higher effective mass the power performance. The polarization behavior shows the power enhancement up to 100% in an air breathing/cooling operation and the higher fuel utilization up to 98% in anodic dead end mode operation. Furthermore, we observe the higher power gain when examining a fuel cell stack rinally, additional power gain, in other words, contribution of pulsation especially takes large portion in higher current loading region where the fuel cell experiences a large water production and heat generation.	Abstract Modern gas turbine airfoils are subject to gas temperatures greater than 3000 ^o F that exceed the thermal limits of the airfoil material. Therefore, the airfoils have to be actively cooled. In film cooling, the coolant air is bled off the compressor stage and is routed external to the surface through inclined holes drilled on the airfoil surface. The coolant jet exiting these inclined holes is expected to provide a protective coolant film on the material surface. While a significant body of experimental and computational literature exists on the film cooling problem, a fundamental understanding of how the major flow structures influence mixing and surface temperatures is not available. Only recently, in a series of papers, Large Eddy Simulation (LES) techniques have been demonstrated to be effective in capturing the range of anisotropic large scale structures, and in accurately predicting the surface cooling effectiveness. In this talk, LES simulation results are analyzed to understand the origin and development of flow structures including their spectral characteristics in order to identify the structures that play an important role on the temperature distributions near the surface (or the cooling effectiveness). These results indicate the significance of the more energetic lower frequencies on the surface temperatures. Inlet turbulence and boundary conditions are shown to play an important role on the surface heat transfer distribution. Strategies for exploiting the dynamics of the structures either actively through pulsing or passively via geometric modifications have been explored in the literature, and these strategies will be discussed in the presentation.	<image/>

Panel Session

14th, Thursday 10:30 - 12:30 Room D

"The Role of Thermal Science for Nuclear Disaster Resilience"

Moderator

Prof. Tomoaki Kunugi Kyoto University Head, Department of Nuclear Engineering Japan

Panelists

Prof. Jun Sugimoto Kyoto University Department of Nuclear Engineering Japan

Emeritus Prof. Masaharu Kitamura

Tohoku University President, Research Institute for Technology Management Strategy Japan

Prof. Michael Corradini

University of Wisconsin-Madison Nuclear Engineering & Engineering Physics U.S.A.

Prof. Yassin Hassan

Texas A&M University Head, Department of Nuclear Engineering U.S.A.

T. Kunugi

J. Su

J. Sugimoto M. Kitamura

M. Corradini

Y. Hassan

Abstract

The Great East Japan Earthquake in March, 2011 triggered the accident at the Fukushima Daiichi nuclear power plant in Japan. Several investigation committees in Japan have issued final reports, which include important lessons learned from the accident. Moreover, a committee established by the National Research Council of the US National Academy of Sciences is also preparing a report to the Nuclear Regulatory Commission and the Congress for improving the safety and security of nuclear plants in the US. Through those activities, the importance and necessity of "resilience in the nuclear engineering" have been emphasized.

The IHTC-15 should give us an opportunity to explore what the resilience in the nuclear energy utilization is and how to manage unexpected disastrous situations from a viewpoint of thermal science and engineering. So, this panel is planned to first summarize the existing knowledge and experiences related to the disaster resilience and then to clarify the critical technological issues of nuclear reactor systems. We hope we will reach a coherent view on the resilience engineering among us regardless of nuclear experts or not and will hopefully discuss how to develop human resources serving with this indispensable knowledge in the future.

To help and enhance the discussion among the participants, the following presentations will be made by international leaders:

- "Resilience Related Lessons Learned from Fukushima Daiichi Accident"
- "Resilience Engineering and Safety-II for Advanced Accident Management"
- "Resilience in Engineering for Long-Term Cooling in Nuclear Power Plants"
- "The role of Computational Fluid Dynamics & Safety System Codes for Nuclear Reactor Predictions and Nuclear Disaster Resilience"

11th, Monday

Room B1

Session 11 (B1) [13:30 - 15:30]

EVP1 | Evaporation, Droplet/Spray/Liquid Film (1)

Co-Chairs : Yoshinori Hamamoto & Youngsuk Nam

IHTC15-8581/EVP-B1-111

Vapor Flow Effect on Falling Film Evaporation of R134a Outside Horizontal Tube Bundle Wen-Tao Ji, Chuang-Yao Zhao, Ya-Ling He (Xi'an Jiatong University, China), Guan-Nan Xi (Daikin Industries, Ltd.), Wen-Quan Tao (Xi'an Jiaotong University, China)

IHTC15-9374/EVP-B1-112

Effect of Initial Temperature of a Hot Steel Plate on Thermal Performance of Impinging Jets during Quenching Processes

Taehoon Kim, Kyu Hyung Do (Institute of Machinery and Materials, Korea), Dong-Wook Oh (Chosun University, Korea), Jungho Lee (Institute of Machinery and Materials, Korea), Jang-Min Park (Yeungnam University, Korea)

IHTC15-9732/EVP-B1-113

Influence of Dynamic Wettability on Evaporation Kinetics of Microscopic Sessile Droplets Rishi Raj (Indian Institute of Technology Panta, India), Evelyn N. Wang (Massachusetts Institute of Technology, USA)

IHTC15-9961/EVP-B1-114

The Effect of Humidity in Ambient Gas on HTWs in Volatile Drops Yuki Fukatani, Masamichi Kohno, Yasuyuki Takata (Kyushu University, Japan), Khellil Sefiane (University of Edinburgh, UK), Jungho Kim (University of Maryland, USA)

IHTC15-9504/EVP-B1-115

Drop Spreading and Evaporation on a Heated Substrate under Variable Gravity Conditions Oleg Kabov (Tomsk Polytechnic University, Russia), Dmitry Zaitsev, Elizaveta Gatapova (Kutateladze Institute of Thermophysics Siberian Branch of Russian Academy of Science, Russia), Andrey Semenov, Elena Bykovskaya, Ekaterina Karnauhova (Institute of Thermophysics Russian Academy of Sciences, Russia), Vladimir Ajaev (Southern Methodist University, USA), Dmitry Feoktistov, Genii Kuznetsov (Tomsk Polytechnic University, Russia)

IHTC15-9523/EVP-B1-116

Heat Transfer and Interaction of Suspended Droplets and Locally Heated Liquid Layer Oleg Kabov (Kutateladze Institute of Thermophysics Siberian Branch of Russian Academy of Science, Russia), Alexander Fedorets (Tyumen State University, Russia), Igor Marchuk (Institute of Thermophysics Russian Academy of Sciences, Russia)

Session 12 (B1) [16:00 - 18:00]

EVP2 | Evaporation, Droplet/Spray/Liquid Film (2)

Co-Chairs : Oleg A. Kabov & Masanori Monde

IHTC15-8367/EVP-B1-121

Spray Cooling by Gently-Deposited Droplets: Experiments and Modeling of Heat-Transfer Mechanisms

Paolo E. Santangelo (University of Maryland, USA), Mauro A. Corticelli, Paolo Tartarini (Università degli Studi di Modena e Reggio Emilia, Italy)

IHTC15-8936/EVP-B1-122

Modelling of Biodiesel and Diesel Fuel Droplet Heating and Evaporation Sergei S. Sazhin, Mansour Al Qubeissi, Morgan R. Heikal (University of Brighton, UK)

IHTC15-9287/EVP-B1-123

Comparative Study of the Cooling of a Hot Temperature Surface Using Sprays and Liquid Jet Alexandre Labergue, T. Aiguier, Michel Gradeck, Fabrice Lemoine (University of Lorraine, France)

IHTC15-9581/EVP-B1-124

An Experimental Study of the Leidenfrost Transition for Water on Nanostructured Superhydrophilic Surfaces Jorge Padilla, Van Carey (University of California, USA)

lorge Padilla, van Carey (University of California,

IHTC15-9140/EVP-B1-125

Visual Observation of Liquid-Solid Contact Situations on Superheated Surface Cooled by Liquid Jet or Spraying

Niro Nagai, Hiroki Onishi (University of Fukui, Japan), Hitoshi Nikaido, Yoshihiro Serizawa (Nippon Steel & Sumitomo Metal Corporation, Japan)

IHTC15-9419/EVP-B1-126

Effect of Marangoni Flow on the Evaporation Rate of Sessile Droplets Dinghua Hu, Huiying Wu, Zhenyu Liu (Shanghai Jiaotong University, China)

General Sessions in Series

11th, Monday

Room B2

Session 11 (B2) [13:30 - 15:10]

A Two-phase, Application

Co-Chairs : Coen Baltis & Akira Murata

IHTC15-9100/TPA-B2-111

Experimental Investigation on a Closed Loop Pulsating Heat Pipe in Hyper-Gravity Conditions

Mauro Mameli, Miriam Manzoni (Università di Bergamo, Italy), Lucio Araneo (Politecnico di Milano, Italy), Sauro Filippeschi (Università di Pisa, Italy), Marco Marengo (Università di Bergamo, Italy)

IHTC15-9899/TPA-B2-112

Effects of Filling Ratio and Input Heat Flux on the Thermal Performance and Flow Pattern of a Pulsating Heat Pipe

Jungseok Lee, Sung Jin Kim (Korea Advanced Institute of Science and Technology, Korea)

IHTC15-9281/TPA-B2-113

Measurement of Kinetic and Enthalpy of Chemical Reaction in Biphasic Millifluidic Droplet Flow by InfraRed Thermography

Romano Marta (LoF Solvay, France), Pradere Christophe (Centre national de la recherche scientifique, France), Toutain Jean, Hany Cindy (LoF Solvay, France), Batsale Jean Christophe (Centre national de la recherche scientifique, France)

IHTC15-9228/TPA-B2-114

Geometric Structure of Segmented Flow Networks Jason Stafford, Nicholas Jeffers (Bell Labs, USA)

IHTC15-9893/TPA-B2-115

Analytical Investigation of Oblique Shock Waves in Two-Phase Flow with Different Sound Speeds

Yosuke Kawamura, Masafumi Nakagawa (Toyohashi University of Technology, Japan)

Session 12 (B2) [16:00 - 17:40]

PB Two-phase, Boiling/Condensation

Co-Chairs : Sung Jin Kim & Yoshio Utaka

IHTC15-8958/TPB-B2-121

Flow Boiling Heat Transfer in Small Cross Section Area Tube with R134a and R32 Francisco Ramirez-Rivera, Francisco Vera-García, José Ramón García-Cascales, Fernando Illán-Gómez (Technical University of Cartagena, Spain)

IHTC15-8598/TPB-B2-122

Nucleation Site Interactions in Upward Flow Boiling Experiments Coen Baltis, Cees W. M. van der Geld (Eindhoven University of Technology, Holland)

IHTC15-8790/TPB-B2-123

Numerical Investigation of Taylor-Bubble Characteristics during Flow Boiling in a Square Minichannel

Arvind Pattamatta (Indian Institute of Technology Madras, India), Martin Freystein, Jochen Dietl, Peter Stephan (Technische Universität Darmstadt, Germany)

IHTC15-8999/TPB-B2-124

Experimental Investigation of Hydrodynamics and Flow Boiling Heat Transfer in Minichannels at High Reduced Pressure

Alexander Belyaev, A.V. Dedov, A.N. Varava, A.T. Komov (Moscow power engineering institute technical university, Russia)

IHTC15-8956/TPB-B2-125

Two-Phase Flow Pressure Drop of R1234yf and R134a in a Mini-Channel Multiport Tube Francisco Vera-García, Alejandro Lopez-Belchí, Francisco Ramírez-Rivera, José Ramón García-Cascales, Fernando Illán-Gómez (Technical University of Cartagena, Spain)

11th, Monday

Room C1

Session 11 (C1) [13:30 - 15:10]

FCV1 | Forced Convection (1)

Co-Chairs : Katsuya Hirata & Patrick H. Oosthuizen

IHTC15-9221/FCV-C1-111

Numerical Study of Heat Transfer Characteristics for Different Solar Flux Distributions on Linear Fresnel Collector Absorber Tubes in Laminar Flow

Izuchukwu Francis Okafor, Jaco Dirker, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8781/FCV-C1-112

Nonlinear Characteristics of Periodically Fully Developed Flow in Cross-Flow Tube Bundle Qingqing Yong, Mo Yang, Zhiyun Wang, Jian Chen (University of Shanghai for Science and Technology, China), Dan Su (Modern urban architectural design institute of Shanghai, China), Yuwen Zhang (University of Missouri, USA)

IHTC15-9307/FCV-C1-113

Hybrid Solution for Convection Heat Transfer of Swirling Flows in Cylindrical Cavity with Rotating Top

Carlos C. S. Cruz (Universidade Federal do Pará, Brazil), Luiz M. Pereira (Fundação Universidade Federal do Vale do São Francisco, Brazil), Emanuel Macêdo, João N.N. Quaresma (Universidade Federal do Pará, Brazil)

IHTC15-9702/FCV-C1-114

Heat Transfer on Sharp and Blunted Flat Plate at Three-Dimensional Shock-Wave /Boundary-Layer Interaction

Volf Borovoy, Ivan Egorov, Natalia Palchekovskaya (Central Aerohydrodynamics Institute, Russia)

IHTC15-9252/FCV-C1-115

Numerical Study of Critical Fire Merging Distances in Square Arrayed Multiple Fires Koyu Satoh, Naian Liu, Xiaodong Xie, Wei Gao (University of Science and Technology of China, China) Session 12 (C1) [16:00 - 17:40]

Co-Chairs : Zensaku Kawara & Min Soo Kim

IHTC15-9135/FCV-C1-121

Simultaneous Thermal and Flow Measurements in a Boundary Layer by Using High-speed Infrared Thermograph and PIV Combined System Shunsuke Yamada, Hajime Nakamura (National Defense Academy, Japan)

IHTC15-8497/FCV-C1-122

Laminar, Transitional, and Turbulent Mixed Convective Heat Transfer from a Thin Inclined Plate Having a Uniform Surface Heat Flux Patrick H. Oosthuizen (Queen's University, Canada)

IHTC15-8755/FCV-C1-123

Three-Dimensional Turbulent Convection inside a Parallelepiped with Two Heated Vertical Walls

Victor I. Terekhov (Kutateladze Institute of Thermophysics Siberian Branch of Russian Academy of Science, Russia), Ali L. Ekaid (Technology University of Baghdad, Iraq)

IHTC15-9377/FCV-C1-124

Entrainment Process in the Vicinity of Pool Fire under Ventilation Condition Yasuo Hattori (Central Research Institute of Electric Power Industry, Japan), Ken Matsuyama (Tokyo University of Science, Japan), Hitoshi Suto (Central Research Institute of Electric Power Industry, Japan), Eiji Onuma, Seiji Okinaga (Tokyo University of Science, Japan)

IHTC15-8962/FCV-C1-125

Experimental Research of Adiabatic Wall Temperature Influenced by Separated Supersonic Flow

Sergey Popovich (Lomonosov Moscow State University, Russia), Kirill Egorov (Bauman Moscow State Technical University, Russia), Urii Vinogradov (Moscow State University, Russia)

General Sessions in Series

11th, Monday

Room C2

Session 11 (C2) [13:30 - 15:30]

TTR1 | Turbulent Transport (1)

Co-Chairs : Sasa Kenjereš & Mamoru Senda

IHTC15-8762/TTR-C2-111

Dynamic and Thermal Characteristics of the Mixing of Two Separated Flows with Different Scales

Alex D`yachenko, Victor Terekhov, Yaroslav Smulsky, Nadezhda Yarygina (Kutateladze Institute of Thermophysics Siberian Branch of Russian Academy of Science, Russia)

IHTC15-9325/TTR-C2-112

Effects of a Stepwise Change in Thermal Boundary Conditions on Heat Transfer Characteristics in a Turbulent Boundary Layer Developing on a Flat Plate Tomoya Houra, Yasutaka Nagano, Masato Tagawa (Nagoya Institute of Technology, Japan)

IHTC15-9647/TTR-C2-113

Control of Momentum and Heat Transport in a Heated Axisymmetric Jet by Means of Vortex Generators

Kensuke Miura, Kouji Nagata, Yasuhiko Sakai, Osamu Terashima, Yasumasa Ito (Nagoya University, Japan)

IHTC15-10000/TTR-C2-114

Verification and Validation of Three Different CFD Codes in Simulating Mixed Convection Flows Using Two Advanced Eddy-Viscosity Models Amir Keshmiri (Manchester Metropolitan University, UK)

IHTC15-8699/TTR-C2-115

Effect of Shark Skin Textures on Entropy Generation for Turbulent Channel Flow and Heat Transfer Problems Yan Jin, Heinz Herwig (Hamburg University of Technology, Germany)

IHTC15-9892/TTR-C2-116

Drag Reduction of Thermally Stratified Flow in a Horizontal Pipe Kenichi Kobayashi, Shota Nakajima, Yu Kimura (Meiji University, Japan)

Session	12	(C2)	[16:00	-	18:00]
---------	----	------	--------	---	--------

Co-Chairs : Amir Keshmiri & Masato Tagawa

IHTC15-8909/TTR-C2-121

Effects of System Rotation on Transitional Boundary Layer Oaki lida, Kensuke Noto (Nagoya Institute of Technology, Japan)

IHTC15-9516/TTR-C2-122

Concurrent Large-Eddy Simulation of Wall-Jet Heat Transfer Enhanced by Systematically-Deformed Turbulence Promoter

Yutaka Oda (Kansai University, Japan), Kenichiro Takeishi (Tokushima Bunri University University, Japan)

IHTC15-9676/TTR-C2-123

Operation of Functional Fluid by Local Wall Heating in a Drag-Reducing Surfactant Solution Flow

Shumpei Hara, Shoko Kawada, Takahiro Tsukahara, Yasuo Kawaguchi (Tokyo University of Science, Japan)

IHTC15-9788/TTR-C2-124

Direct Numerical Simulation on the Effects of Amplitude and Hydrophilicity of Wavy Wall on Turbulent Heat Transfer and Drag Ryota Akaiwa, Atsushi Nishida, Yoshimichi Hagiwara (Kyoto Institute of Technology, Japan)

IHTC15-9552/TTR-C2-125

Impinging Jet Passive Control for Wall Shear Stress Enhancement

Kodjovi Šodjavi, Brice Montagné (University of La Rochelle, France), Florin Bode (Technical University of Civil Engineering in Bucharest, Romania), Magdalena Kristiawan (Institut National de la Recherche Agronomique, France), Ilinca Nastase (Technical University of Civil Engineering in Bucharest, Romania), Amina Meslem (University of La Rochelle, France)

IHTC15-8416/TTR-C2-126

Multi-scale Second Moment Modelling of Turbulence and Heat Transfer in Porous Media Yusuke Kuwata, Yota Sakurai, Kazuhiko Suga (Osaka Prefecture University, Japan)

11th, Monday

Room E

Session 11 (E) [13:30 - 15:30]

BMA1 | Bio and Medical Applications (1)

Co-Chairs : Bin Chen & Yukio Yamada

IHTC15-8489/BMA-E-111

A Study on the Temperature Profile and Thermal Damage in Human Skin Tissue Ik-Tae Im, Suk Bum Youn, Dong Guk Ko (Chonbuk National University, Korea)

IHTC15-9884/BMA-E-112

Estimation of Blood Perfusion Rate and Its Temperature Dependency in Human Abdominal Area under Heating Condition

Junnosuke Okajima, Takahiro Okabe, Tessai Sugiura, Atsuki Komiya, Takashi Seki, Shigenao Maruyama (Tohoku University, Japan)

IHTC15-9715/BMA-E-113

Tumor Ablation with Near-Infrared Radiation Using Localized Injection of Nanoparticles Anup Paul, Nanda Kishor Bandaru, Arunn Narasimhan, Sarit Kumar Das (Indian Institute of Technology Madras, India)

IHTC15-8772/BMA-E-114

State Estimation Problem in Hyperthermia Treatment of Tumors Loaded with Nanoparticles Bernard Lamien, Helcio R. B. Orlande (Federal University of Rio de Janeiro, Brazil), Guillermo E. Eliçabe (University of Mar del Plata , Argentina), André J. Maurente (Federal University of Rio Grande do Norte, Brazil)

IHTC15-9350/BMA-E-115

3-D Investigation of Thermal-structure Analysis in a Kidney during Cold Perfusion Kai Zhu, Yabo Wang, Fei Liang (Tianjin Unversity of Commerce, China), Yamin Zhang (Tianjin First Center Hospital, China)

IHTC15-9624/BMA-E-116

Colloidal Magnetic Clusters for Hyperthermia Heating Rong Fu, Yuying Yan (University of Nottingham, UK) Session 12 (E) [16:00 - 17:40]

Co-Chairs : Takushi Saito & Yimin Xuan

IHTC15-8586/MNF-E-121

Mass Spectroscopy of Intermediate Products Involved in Chemical Vapor Deposition Synthesis of Carbon Nanotube

Shuhei Inoue, Daisuke Nakahara, Yosuke Oga, Yukihiko Matsumura (Hiroshima University, Japan)

IHTC15-9843/MNF-E-122

Development of an in-Plane Thermal Diffusivity Measurement Method with a Lock-in Thermography and Application to High Thermal Conductive CFRPs Takuya Ishizaki, Hosei Nagano (Nagoya University, Japan)

IHTC15-8623/MNF-E-123

High Thermal Conductive Graphite Films from Thin Polymer Films

Atsushi Tatami, Masamitsu Tachibana (Kaneka Corporation, Japan), Takashi Yagi, Megumi Akoshima (National Institute of Advanced Industrial Science and Technology, Japan), Mutsuaki Murakami (Kaneka Corporation, Japan)

IHTC15-9223/MNF-E-124

Experimental Investigation of the Work Piece Temperatures in Dry Orthogonal Metal Turning Marc Deppermann, Hendrik Puls, Michael Burghold, Reinhold Kneer, Fritz Klocke (RWTH Aachen University, Germany)

IHTC15-9077/MNF-E-125

Four-Dimensional Flow Measurements of UV Curable Resin at a Thermally-Assisted Nanoimprint Process

Motoharu Asano, Noriyuki Unno, Shin-ichi Satake, Jun Taniguchi (Tokyo University of Science, Japan)

General Sessions in Series

11th, Monday

Room F

Session 11 (F) [13:30 - 14:50]

MTR1

Co-Chairs : Michel Quintard & Kenichiro Takeishi

Mass Transfer and Drying (1)

IHTC15-8582/MTR-F-111

Surface Tension-Driven Flows within Drying Paint Films Nazli Saranjam, Sanjeev Chandra, Javad Mostaghimi (University of Toronto, Canada), H. Fan, J. Simmer (General Motors R&D, USA)

IHTC15-9024/MTR-F-112

Application of Entransy in Match Property of Liquid Desiccant Dehumidification Lun Zhang, Xiaohua Liu, Yi Jiang (Tsinghua University, China)

IHTC15-8746/MTR-F-113

MRI Measurement and Numerical Modeling of Moisture Transport in Microwave Vacuum Drying of Porous Media Takaharu Tsuruta, Hirofumi Tanigawa (Kyushu Institute of Technology, Japan)

IHTC15-8875/MTR-F-114

Investigation of Heat Transfer within an Array of Impinging Jets with Local Extraction of Spent Fluid

Philipp Cavadini, Philip Scharfer, Wilhelm Schabel (Karlsruhe Institute of Technology, Germany)

Session 12 (F) [16:00 - 17:20]

Co-Chairs : Gary Rosengarten & Takao Tsukada

IHTC15-9089/MTR-F-121

Direct Numerical Simulation Modeling of Multidisciplinary Transport during Li-Ion Battery Charge/Discharge Processes Fangming Jiang, Jianbang Zeng, Wei Wu, Peng Peng (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China)

IHTC15-9185/MTR-F-122

Effect of Velocity and Evaporation on Non-Isothermal Meniscus in a Capillary Antoine Voirand, Adel Benselama, Yves Bertin (Institut PPrime, France)

IHTC15-9351/MTR-F-123

Effect of Module Inclination Angle on Air Gap Membrane Distillation David E. M. Warsinger, Jaichander Swaminathan, John H. Lienhard V (Massachusetts Institute of Technology, USA)

IHTC15-9151/MTR-F-124

Experimental Investigation of Interfacial Temperature Evolution during Evaporation of Sessile Droplet

Martin Still, Tatiana Gambaryan-Roisman, Peter Stephan (Technische Universität Darmstadt, Germany)
11th, Monday

Room G

Session 11 (G) [13:30 - 15:10]

Photon, Phonon and Electron Transport

Co-Chairs : Philippe Ben-Abdallah & Mitsuhiro Matsumoto

IHTC15-8551/PPE-G-111

PPE

The Effect of Distributions of Nanoparticles on Thermal Conductivity of Nanocomposites Jin Zhang, Bo Shi, Yimin Xuan (Nanjing University of Aeronautics and Astronautics, China)

IHTC15-8641/PPE-G-112

Circuits for Thermal Light Philippe Ben-Abdallah (Laboratoire Charles Fabry, France), Svend-Age Biehs (Oldenburg University, Germany)

IHTC15-9038/PPE-G-113

A New Theoretical Model of Selectively Photothermolysis to Aid Laser Treatment of Poor Responding Port Wine Stain Blood Vessels

Dong Li, Bin Chen (Xi'an Jiaotong University, China), Guo-xiang Wang (The University of Akron, USA), Wenjuan Wu, Y L He (Xi'an Jiaotong University, China)

IHTC15-9156/PPE-G-114

Thermal Conductivity Calculation of Magnesium Silicide Alloys by Lattice Dynamics and Molecular Dynamics Methods

Takuma Shiga, Takuru Murakami, Takuma Hori (The University of Tokyo, Japan), Keivan Esfarjani (Rutgers University, USA), Junichiro Shiomi (The University of Tokyo)

IHTC15-9064/PPE-G-115

In-Plane Thermal Conductivity of Si Thin Films from First-Principles Calculation Xinjiang Wang, Baoling Huang (The Hong Kong University of Science and Technology, China) Session 12 (G) [16:00 - 18:00]

Co-Chairs : Jihwan Jeong & Ryosuke Matsumoto

IHTC15-8816/HEX-G-121

Numerical Simulation of Complicated Chevron Plates Passages

Hui-bao Luan (Shanghai Marine Diesel Engine Research Institute, China), Wen-Quan Tao (Xi'an Jiaotong University, China), Guo-Qing Zhu, Bin Chen, Song Wang (Shanghai Marine Diesel Engine Research Institute, China)

IHTC15-8647/HEX-G-122

Investigation of the Flow Distribution for Supercritical Carbon Dioxide Fluid in a Plate Heat Exchanger

Yi-Chun Tang, Chen-Xi Chu (National Chiao Tung University, Taiwan), Yur-Tsai Lin (Yuan-Ze Institute of Technology, Taiwan), Rony Sian, Chi-Chuan Wang (National Chiao Tung University, Taiwan)

IHTC15-9411/HEX-G-123

A Computer Model for Simulation of Drying and Preheating of Wet Iron ore in a Rotary Kiln Ashish Agrawal, Partha Ghoshdastidar (Indian Institute of Technology Kanpur, India)

IHTC15-8503/HEX-G-124

Effect of Sand Fouling on Compact Fin Heat Exchangers

Sarah Obadina, Josh Fody, Serguei Dessiatoun, Michael Ohadi, Amir Shooshtari (University of Maryland, USA)

IHTC15-9412/HEX-G-125

Thermal Performance and Characteristics of Spiral-Tube Ground Heat Exchanger for Ground-Source Heat Pump

Jalaluddin Haddada (Hasanuddin University, Indonesia), Akio Miyara (Saga University, Japan)

IHTC15-9149/HEX-G-126

Comparison between the Thermal Performance of Single and Two-Layer Microchannels Inserted with Micro Pin Fins

Olayinka O. Adewumi (University of Pretoria, South Africa), Tunde Bello-Ochende (University of Cape Town, South Africa), Josua P. Meyer (University of Pretoria, South Africa)

11th, Monday

Room H

Session 11 (H) [13:30 - 15:10]

MLT

Molecular Transport

Co-Chairs : Yongping Chen & Taku Ohara

IHTC15-8513/MLT-H-111

Molecular Dynamics Study on Influences of Surface Structural Characteristics on Thermal Energy Transport over Liquid-Solid Interfaces

Masahiko Shibahara, Ryohei Toda, Sho Murakami (Osaka University, Japan), Taku Ohara (Tohoku University, Japan)

IHTC15-9055/MLT-H-112

Molecular Dynamics Investigation on the Wetting Process of Liquid Droplet on a Solid Surface

Eisuke Arakaki, Shogo Nishida, Donatas Surblys, Yasutaka Yamaguchi (Osaka Univerisity, Japan), Koji Kuroda, Masaru Kagawa, Tadashi Nakajima, Hideo Fujimura (R&D Center Dai Nippon Printing Co., Ltd., Japan)

IHTC15-8514/MLT-H-113

Photon Upconversion Based on Inter-Molecular Energy Transfer in Ionic Liquids: A Technology for Utilizing Sub-Bandgap Wasted Solar Energies Yoichi Murakami, Akio Kawai (Tokyo Institute of Technology, Japan)

IHTC15-9635/MLT-H-114

Heat Transferred from Cold to Hot in Near-Critical Fluids under Low Gravity Guo-Jie Hu, Hai-Dong Wang, Zengyuan Guo (Tsinghua University, China)

IHTC15-9499/MLT-H-115

A Coupling Scheme of Lattice Boltzmann Method and Finite Volume Method for Multi-Component Diffusion Processes

Zi-Xiang Tong, Ya-Ling He, Wei-Wei Yang, Wen-Quan Tao (Xi'an Jiaotong University, China)

Session 12 (H) [16:00 - 18:00]

Co-Chairs : Ashley Fly & Shohji Tsushima

IHTC15-9494/FCL-H-121

Optimization of Oxygen and Proton Transfer in Heterogeneous PEFC Catalyst Layer by Controlling Local Carbon Black Aggregate Structure Gen Inoue, Shohei Baba (Kyoto University, Japan)

IHTC15-9267/FCL-H-122

Measurements of the Temperature Distribution of a PEMFC Catalyst Layer Using an Ultra Thin Thermocouple Array Takuto Araki, Toshiki Sugimoto (Yokohama National University, Japan)

IHTC15-9176/FCL-H-123

Study on the Effect of Micro Porous Layer on Water Transport Phenomena in PEFC by Using Neutron Radiography Hideki Murakawa, Katsumi Sugimoto, Nobuki Kitamura, Hitoshi Asano, Nobuyuki Takenaka (Kobe University, Japan), Yasushi Saito (Kyoto University, Japan)

IHTC15-9587/FCL-H-124

Effect of Heat and Mass Transfer and Electrochemistry on Performance in Solid Oxide Fuel Cell Stacks

Robert Nishida, Steven Beale, Jon Pharoah (Queen's University, Canada)

IHTC15-9440/FCL-H-125

Towards the Microstructural Optimisation of Solid Oxide Fuel Cell Electrodes Masashi Kishimoto, Marina Lomberg, Enrique Ruiz-Trejo, Nigel Brandon (Imperial College London, UK)

IHTC15-9078/FCL-H-126

Flow Distribution Uniformity Evaluation in kW-Range Direct Methanol Fuel Cell Stack Yuta Nakano, Yuki Morimatsu, Zhen Guo, Masakazu Ohashi, Masataka Mochizuki (Fujikura Ltd., Japan)

11th, Monday

Room I

Session 11 (I) [13:30 - 15:30]

TPP1

Thermophysical Properties (1)

Co-Chairs : Dawei Tang & Atsumasa Yoshida

IHTC15-8453/TPP-I-111

Method for Predicting Spatial Distribution of Formation Thermophysical Properties from Temperature Logs

Wen-Long Cheng, Yong-Le Nian, Yong-Hua Huang, Cheng-Mei Zhang (University of Science and Technology of China, China)

IHTC15-9572/TPP-I-112

Analysis of Improved Lumped Models for Estimating the Thermal Conductivity Augmentation in Composite Materials

Debora Moreira, Mariana Cristina Telles, Luiz Carlos Nunes, Leandro Sphaier (Universidade Federal Fluminense, Brazil)

IHTC15-8568/ TPP-I-113

Modeling Thermal Conductivity of Natural Rubber with Carbon Black Junping Song, Lianxiang Ma, Yan He (Qingdao University of Science and Technology, China), Wei Li (Zhejiang University, China), Shichune Yao (Carnegie Mellon University, USA)

IHTC15-8626/TPP-I-114

The Effect of Porous Media Properties on Effective Thermal Conductivity of Tetrahydrofuran Hydrates and Evaluation of Existing Prediction Correlations

Lei Yang, Jiafei Zhao, Yongchen Song, Weiguo Liu, Yu Liu, Yi Zhang, Dayong Wang, Mingjun Yang, Jiagi Wang (Dalian University of Technology, China)

IHTC15-8646/TPP-I-115

Intriguingly High Thermal Conductivity Enhancement of Graphene Nanoplatelets Contained Poly (Methyl Methacrylate) Composites

Wei Yu, Huaging Xie (Shanghai Second Polytechnic University, China), Xiaofeng Zhou (Southeast University, China), Yang Li, Lifei Chen (Shanghai Second Polytechnic University, China)

IHTC15-8688/TPP-I-116

Characterization of Thermal Transport in Carbon Nanotube Yarns

Jianli Wang(Southeast University, China), Sisi He (Tianjin University, China), Jiajian Bao (Southeast University, China), Xing Zhang (Tsinghua University, China), Juekuan Yang, Yunfei Chen (Southeast University, China)

Session 12 (I) [16:00 - 17:40]

TPP2 | Thermophysical Properties (2)

Co-Chairs : Koji Miyazaki & Christophe Pradere

IHTC15-8806/TPP-I-121

Measurement of Temperature Distribution for the Hydrate Formation and Dissociation in Porous Media

Mingjun Yang, Yongchen Song, Lanlan Jiang, Shenglong Wang, Yuechao Zhao, Jiafei Zhao (Dalian University of Technology, China)

IHTC15-9395/TPP-I-122

Experimental Measurement on Spectral Properties of Quartz at High Temperature Shun-De Zhang, Qing Ai, Xin-Lin Xia (Harbin Institute of Technology, China)

IHTC15-9451/TPP-I-123

Raman Spectra Method for Determining Viscosity of Supercritical Fluids Qin-yi Li, Xing Zhang (Tsinghua University, China)

IHTC15-8213/TPP-I-124

Reconstruction of Thermal Boundary Resistance and Intrinsic Thermal Conductivity of SiO₂-GaN-Sapphire Structure and Temperature Dependence Zhaoliang Wang, Yong Ma, G. Yao, X. Tian (China University of Petroleum, China), Dawei Tang (Chinese Academy of Science, China)

IHTC15-9128/TPP-I-125

Development of a Thermal Measurement Technique for Detection of Localized Filler Distribution within a Polvmer Composite

Dong-Wook Oh (Chosun University), Jang Min Park (Yeungnam University), Ook Joong Kim, Sang Jin Park (Korea Institute of Machinery and Materials, South Korea)

11th, Monday

Room J

Session 11 (J) [13:30 - 15:30]

CDS1

Co-Chairs : Davide Del Col & Naoki Ono

Condensation (1)

IHTC15-8481/CDS-J-111

A Literature Overview on Condensation Heat Transfer of Ammonia on the Outside of Tubes Klaus Spindler (Universität Stuttgart, Germany)

IHTC15-10516/CDS-J-112

Versatile Models for Condensation of Fluids with Widely Varying Properties from the Micro to Macroscale

Srinivas Garimella, Brian M. Fronk, Jeffrey A. Milkie, Brendon L. Keinath (Georgia Institute of Technology, USA)

IHTC15-9112/CDS-J-113

A New Condensation Heat Transfer Model Based on the Flow Regime in a Nearly Horizontal Pipe

Tae-hwan Ahn, Jae-jun Jeong (Pusan National University, South Korea), Kyong-ho Kang (Korea Atomic Energy Reasearch Institute, South Korea), Jong Cheon (Korea Hydro and Nuclear Power co., South Korea), Byong-jo Yun (Pusan National University, South Korea)

IHTC15-9536/CDS-J-114

Numerical Simulation of Heat and Mass Transfer Processes in Air-Cooled Condenser Valerij Artemov, Konstantin Minko, Georgij Yankov (National Research University, Russia)

IHTC15-9958/CDS-J-115

A Numerical Study of Condensation on Asymmetric Microsturctures Shashank Natesh, Vinod Narayanan (Oregon State University, USA), Sushil Bhavnani (Auburn University, USA)

IHTC15-9361/CDS-J-116

Experimental Studies of Condensation Heat Transfer in an Inclined Microfin Tube Adekunle O. Adelaja, Jaco Dirker, Josua P. Meyer (University of Pretoria, South Africa) Session 12 (J) [16:00 - 18:00]

Co-Chairs : Akio Miyara & Vinod Narayanan

IHTC15-9363/CDS-J-121

Experimental Investigation on Pressure Drop and Friction Factor in Tubes at Different Inclination Angles during the Condensation of R134a

Adekunle O. Ādelaja, Daniel R.E. Ewim, Jaco Dirker, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8645/CDS-J-122

A New Flow Pattern Based General Correlation for Heat Transfer during Condensation in Horizontal Tubes

Mirza Shah (Engineering Research & Consultation, USA)

IHTC15-8873/CDS-J-123

Steam Flow Condensation in Semi-Circular and Square Mini-Channels Melanie Derby (Kansas State University, USA), Yoav Peles, Michael K. Jensen (Rensselaer Polytechnic Institute, USA)

IHTC15-10018/CDS-J-124

Condensation in Mini and Microchannels: Effect of Diameter, Shape, Inclination and Fluid Properties Stefano Bortolin, Davide Del Col (University of Padova, Italy)

IHTC15-10015/CDS-J-125

Condensation Heat Transfer of a Non-Azeotropic Mixture in a Single Minichannel Davide Del Col, Marco Azzolin, Stefano Bortolin, Claudio Zilio (University of Padova, Italy)

IHTC15-9033/CDS-J-126

Condensation Heat Transfer Characteristics on A Micro-Structured Surface with Wettability Gradient

Atsushi Tokunaga (Ube National College of Technology, Japan), Masaki Mizutani, Gyoko Nagayama, Takaharu Tsuruta (Kyushu Institute of Technology, Japan)

11th, Monday

Room K

Session 11 (K) [13:30 - 15:30]

EES1 | Energy Environmental Systems (1)

Co-Chairs : Tor Laneryd & Shinfuku Nomura

IHTC15-8948/EES-K-111

Heat Recovery in Difficult "Polluted Flue Gas Applications" in Waste to Energy Systems Petr Stehlik, Vojtech Turek, Zdenek Jegla, Bohuslav Kilkovsky (Brno University of Technology, Czech Republic)

IHTC15-8662/EES-K-112

Investigation on the Process of CO_2 Diffusion and Mass Transfer in Oil-Saturated Porous Media Using MRI

Yuechao Zhao, Yongchen Song, Min Hao (Dalian University of Technology, China)

IHTC15-9294/EES-K-113

Effect of Boundary Conditions and Ventilator Size on the Natural Convection in a Naturally Ventilated Greenhouse

Sunita Kruger (University of Johannesburg, South Africa), Leon Pretorius (University of Pretoria, South Africa)

IHTC15-9011/EES-K-114

Multi-Scale Modeling and Approximation Assisted Optimization of Bare Tube Heat Exchangers

Daniel Bacellar, Jiazhen Ling, Vikrant Aute, Reinhard Radermacher (University of Maryland, USA), Omar Abdelaziz (Oak Ridge National Laboratory, USA)

IHTC15-9639/EES-K-115

Heat Balance of Anti-Season Ice Cave

Liangsuo Shu, Shiping Jin, Suyi Huang, Xin Qian, Xiyun Wang, Kai Tan, Yuming Liang, Jinyi Tan (Huazhong University of Science & Technology, China)

IHTC15-8280/EES-K-116

Energy-Based Assessment of Optimal Operating Parameters for Coupled Biochar and Syngas Production in Stratified Downdraft Gasifiers

Giulio Allesina, Simone Pedrazzi, Emma La Cava (University of Modena and Reggio Emilia, Italy), Michele Orlandi (Bioboost S.r.l., Italy), Miriam Hanuskova, Claudio Fontanesi, Paolo Tartarini (University of Modena and Reggio Emilia, Italy)

Session 12 (K) [16:00 - 18:00]

Co-Chairs : Giulio Allesina & Chaobin Dang

IHTC15-9567/EES-K-121

Analysis of Thermo-Hydraulic Couplings in a Heat Pump Water Heating System Guillaume Segond, Stéphane Launay, Lounès Tadrist (Aix-Marseille University, France)

IHTC15-9058/EES-K-122

PIV Measurement of Heat Transfer Deterioration Phenomena Hiroyuki Nakaharai, Akira Yamada, Ryosuke Shigenaga (Mitsubishi Heavy Industries, LTD., Japan)

IHTC15-8895/EES-K-123

The Impact of Thermal Engineering Research on Global Climate Change

Patrick Phelan (Arizona State University, USA), Omar Abdelaziz (Oak Ridge National Laboratory, USA), Todd Otanicar (University of Tulsa, USA), Bernadette Phelan (Phelan Research Solutions Inc., USA), Ravi Prasher (Arizona State University, USA), Robert Taylor (University of New South Wales, Australia), Himanshu Tyagi (Indian Institute of Technology Ropar, India)

IHTC15-9246/EES-K-124

CFD Study of Non-Guided Laminar Mixed Convection of a High Prandtl Number Fluid in a Transformer Winding-Like Geometry

Tor Laneryd (ABB Corporate Research, Sweden), Jurjen Kraneborg, Yuhe Jiao, Andreas Gustafsson (ABB Transformers, Sweden)

IHTC15-9019/EES-K-125

A Study on the Prediction of Solar Insolation and Its Effects on Building Heating Load Seong-Yeon Yoo, Tae-Ho Kim, Kyu-Hyun Han (Chungnam National University, Korea)

IHTC15-9883/EES-K-126

Domestic Passive Ventilation with Heat Recovery (PVHR): Performance Criteria, Tests and Operational Variations

Tom Lipinski (Ventive Ltd., UK), Szu-Hung Lee, Peter RN Childs (Imperial College London, UK)

12th, Tuesday

Room B1

Session 21 (B1) [9:40 - 11:40]

EVP3 | Evaporation, Droplet/Spray/Liquid Film (3)

Co-Chairs : Van Carey & Hiroyasu Ohtake

IHTC15-8637/EVP-B1-211

Heat Transfer Characterization during Transient Boiling

Nicolas Baudin (Institut de Mécanique des Fluides de Toulouse, France/Institut de Radioprotection et de Sûreté Nucléaire, France), Catherine Colin (Institut de Mécanique des Fluides de Toulouse, France), Pierre Ruyer (Institut de Radioprotection et de Sûreté Nucléaire, France), Julien Sebilleau (Institut de Mécanique des Fluides de Toulouse, France)

IHTC15-8766/EVP-B1-212

Propagation Dynamics of Self-Sustained Evaporation Front and Characteristics of Small-Scale Perturbations at the Interface

Vladimir Zhukov, Aleksandr Pavlenko, Mikhail Moiseev (Kutateladze Institute of Thermophysics, Russia), Denis Kuznetsov (Novosibirsk State University, Russia)

IHTC15-8439/EVP-B1-213

Experimental Study of Pulsed and Steady State Confined Subcooled Jet Impingement Boiling

Sridhar Abishek, Ramesh Narayanaswamy (Curtin University, Australia), Vinod Narayanan (Oregon State University, USA)

IHTC15-8347 EVP-B1-214

Flow inside Evaporating Water Sessile Drop: A Numerical Study

Chafea Bouchenna, Mebrouk Ait Saada, Salah Chikh (Université des Sciences et de la Technologie Houari-Boumediene, Algérie), Lounes Tadrist (Aix-Marseille Université, France)

IHTC15-8693 EVP-B1-215

Heat Transfer and Crisis Phenomena Development at Boiling and Evaporation in Falling Liquid Film at Stepwise Heat Generation

Aleksandr Pavlenko, Anton Surtaev, Irina Starodubtseva (Kutateladze Institute of Thermophysics, Russia)

IHTC15-8652/EVP-B1-216

Capillary and Thermal Performance of Advanced Multi-Height Micropost Evaporator Wicks Seunggeol Ryu, Wonchul Lee, Youngsuk Nam (Kyung Hee University, Korea)

Session 22 (B1) [14:00 - 16:00]

Co-Chairs : Masamichi Kohno & Jong-Taek Oh

IHTC15-9930/FBL-B1-221

Experimental Investigations of Flow Boiling Heat Transfer and Flow Behaviors in Microgap Channel

Osamu Kawanami (University of Hyogo, Japan), Yu Matsuda (Nagoya University, Japan), Yasuhiro Egami (Aichi Institute of Technology, Japan), Itsuro Honda (University of Hyogo, Japan), Hiroki Yamaguchi, Tomohide Niimi (Nagoya University, Japan)

IHTC15-9604 FBL-B1-222

An Experimental Investigation of Two-Phase Refrigerant R-410A Flow Distribution in Plate Heat Exchangers

Chien-Yuh Yang, Yueh-Hung Lin, Guang-Cheng Li (National Central University, Taiwan)

IHTC15-8821/FBL-B1-223

Enhancing FC-72 Flow Boiling Heat Transfer through Bubble Pumping from Imbalance Shear Flow Driven Rotating Beads Shu-Lei Wang, Tsing-Fa Lin (National Chiao Tung University, Taiwan)

IHTC15-8800/FBL-B1-224

The Impact of Fin Deformation on Boiling Heat Transfer and Pressure Drop in Internally Grooved Tubes Sunil Mehendale (Michigan Technological University, USA)

IHTC15-8435 FBL-B1-225

Evaluation of Correlations for Predicting Heat Transfer during Boiling of Carbon Dioxide Inside Channels Mirza Shah (Engineering Research & Consultation, USA)

IHTC15-8351/FBL-B1-226

Evaluation of a Method for Predicting Heat Transfer during Boiling of Mixtures in Plain Tubes Mirza Shah (Engineering Research & Consultation, USA)

12th, Tuesday

Session 23 (B1) [16:30 - 18:30]

FBL2 | Flow Boiling (2)

Co-Chairs : Hitoshi Asano & Sunil Mehendale

IHTC15-8792/FBL-B1-231

Pressure Drop and Flow Boiling Heat Transfer of Refrigerant R-134a in a Microchannel Heat Sink

Vladimir V. Kuznetsov, Alisher S. Shamirzaev (Kutateladze Institute of Thermophysics, Russia)

IHTC15-9049/FBL-B1-232

Experimental Study of Two Phase Flow Boiling Heat Transfer and Pressure Drop of Water in a Minitube

Manoharan Aravinthan, Sarit Kumar Das, Arcot R. Balakrishnan (Indian Institute of Technology Madras, India)

IHTC15-9410/FBL-B1-233

Heat Transfer Coefficient and Pressure Drop Characteristics during R-1234yf Evaporation Inside Horizontal Small Tubes

Nguyen Ba Chien, Pham Quang Vu, Kwang II Choi, Jong-Taek Oh (Chonnam National University, Republic of Korea)

IHTC15-9589/FBL-B1-234

Characteristics of Flow Boiling Heat Transfer in Rectangular Minichannels Chitose Tanaka, Chaobin Dang, Eiji Hihara (The University of Tokyo, Japan)

IHTC15-9122/FBL-B1-235

Flow Boiling Heat Transfer of R1234ze(E) in a 3.4 mm ID Microfin Tube Simone Mancin, Andrea Diani, Luisa Rossetto (University of Padova, Italy)

IHTC15-8705/FBL-B1-236

An Analysis of the Effect of the Footprint Orientation on the Heat Sink Performance during Flow Boiling in Micro-Scale Channels Hugo Leonardo Souza Lara Leão, Gherhardt Ribatski (University of São Paulo, Brazil)

Room B2

Session 21 (B2) [9:40 - 11:40]

Co-Chairs : Yoichi Murakami & Evelyn Wang

IHTC15-8410/SOL-B2-211

Design and Analysis of a Rooftop Solar Furnace

Robert Taylor, Moucun Yang (Nanjing University of Technology), Arunima Bandara, Karl Morrison, Awais Ashraf, Evatt Hawkes (The University of New South Wales, Australia)

IHTC15-8072/SOL-B2-212

Development of Concentrating System of Dye-Sensitized Solar Cell with a Heat Exchanger Yong Woo Kim (Pusan National University, South Korea), Young Hyung Kim, Sang Hee Park (Kumoh National Institute of Technology, South Korea)

IHTC15-9580/SOL-B2-213

Analysis of Regenerative Thermal Storage Geometries for Solar Gas Turbines Peter Klein (University of the Witwatersrand, South Africa/Council for Scientific and Industrial Research, South Africa), Thomas Roos (Council for Scientific and Industrial Research, South Africa), John Sheer (University of the Witwatersrand, South Africa)

IHTC15-9162/SOL-B2-214

Mathematical Modeling of Radiative Heat Transfer Process in High-Temperature Solar Power Plant

Victor Leonov, Aleksey Bannikov, Igor Zharenov (Bauman Moscow State Technical University, Russia)

IHTC15-8054/SOL-B2-215

Hybrid Device for CPV Power Generation and Heating Dong II Lee, Seung Wook Baek (Korea Advanced Institute of Science and Technology, Korea)

IHTC15-8611/SOL-B2-216

Design and Analysis of a Low-Profile, Concentrating Solar Thermal Collector Qiyuan Li, Cheng Zheng, Xiaoguang Gu, Albert Woffenden (The University of New South Wales, Australia), Gary Rosengarten (Royal Melbourne Institute of Technology, Australia), Evatt Hawkes (The University of New South Wales, Australia), Moucun Yang (Nanjing University of Technology, China), Robert Taylor (The University of New South Wales, Australia)

12th, Tuesday

Session 22 (B2) [14:00 - 16:00]

SOL2 | Solar Energy (2)

Co-Chairs : Pradip Dutta & Shigeki Hirasawa

IHTC15-9067/SOL-B2-221

A Heat Transfer Model for Concentrating Silicon Solar Cells in a Spectrally Splitting Hybrid Receiver

Ahmad Mojiri, C. Stanley (Royal Melbourne Institute of Technology, Australia), Elizabeth Thomsen, Vernie Everett, Andrew Blakers (College of Engineering and Computer Science, Australian National University, Australia), Gary Rosengarten (Royal Melbourne Institute of Technology, Australia)

IHTC15-9239/SOL-B2-222

An Integrated Thermal Electrical Model for Single Cell Photovoltaic Receivers under Concentration

Marios Theristis, Tadhg S O'Donovan (Heriot-Watt University, United Kingdom)

IHTC15-9597/SOL-B2-223

Investigation of Design Parameters in Planar Solar Thermophotovoltaic Devices David Bierman, Andrej Lenert, Evelyn Wang (Massachusetts Institute of Technology, USA)

IHTC15-9490/SOL-B2-224

Numerical Simulation of Parabolic Trough Receiver under Non-Uniform and Fluctuant Solar Flux Condition

Kun Wang, Ya-Ling He, Ze-Dong Cheng, Ming-Jia Li, Wen-Quan Tao (Xi'an Jiaotong University, China)

IHTC15-9290/SOL-B2-225

Numerical Simulation of Heat Transfer in a Directly Illuminated Solar Thermal Energy Store Ityona Amber, Tadhg S O'Donovan (Heriot Watt University, United Kingdom)

IHTC15-9526/SOL-B2-226

Heat Transfer Modeling in Integrated Photoelectrochemical Hydrogen Generators Using Concentrated Irradiation

Saurabh Tembhurne, Mikael Dumortier, Sophia Haussener (Swiss Federal Institute of Technology in Lausanne, Switzerland)

Session 23 (B2) [16:30 - 18:10]

Co-Chairs : Katsunori Nagano & Robert Taylor

IHTC15-9014/SOL-B2-231

A Numerical Model of Transient Thermal Transport Phenomena in a High-Temperature Solid-Gas Reacting System for CO₂ Capture Applications Lindsey Yue, Wojciech Lipinski (The Australian National University, Australia)

IHTC15-8681/SOL-B2-232

DSMC Study on the Rarefied Gaseous Heat Transfer in Annulus Heated by Nonuniform Heat Flux

Xin-Peng Zhao, Zeng-Yao Li, Zhen Tang, Wen-Quan Tao, (Xi'an Jiaotong University, China)

IHTC15-9309/SOL-B2-233

Forecast Methods for Direct Normal Irradiance at the Ground Level Carlos Coimbra (University of California, San Diego, USA)

IHTC15-9257/SOL-B2-234

Simulation Study of Regenerator of Stirling Engine Used for Solar Energy Thermal Power Generation

Jingfu Wang, Xinxin Zhang, Miao Zeng, Mingxing Jia (Beijing University of Technology, P R China)

IHTC15-9150/SOL-B2-235

Heat Transfer Enhancement in a Parabolic Trough Receiver Using Perforated Conical Inserts Aggrey Mwesigye (University of Pretoria, South Africa), Tunde Bello-Ochende (University of Cape Town, South Africa), Josua P. Meyer (University of Pretoria, South Africa)

12th, Tuesday

Room C1

Session 21 (C1) [9:40 - 11:40]

MIN1 | Measurement and Instrumentation (1)

Co-Chairs : Nao Ninomiya & Benjamin Remy

IHTC15-8678/MIN-C1-211

An Investigation of Wall Temperature Characteristics to Improve the Evaluation Method for Thermal Fatigue at a T-Junction Pipe

Koji Miyoshi, Akira Nakamura (Institute of Nuclear Safety System, Incorporated, Japan), Nobuyuki Takenaka (Kobe University, Japan)

IHTC15-8703/MIN-C1-212

High Speed Observation and Measurement of Surface Temperature and Surface Heat Flux during Impact of a Droplet on Hot Surface

Suhaimi Illias (Saga University, Japan/Universiti Malaysia Perlis, Malaysia), Mohammad Nasim Hasan (Bangladesh University of Engineering and Technology, Bangladesh), Yuichi Mitsutake, Masanori Monde (Saga University, Japan)

IHTC15-8290/MIN-C1-213

New Methodology and Apparatus for the Thermal Characterization of Semi-Crystalline Thermoplastics in Extreme Conditions

Baptiste Pignon (Université de Nantes, France), Xavier Tardif (Instituts de Recherche Technologique Jules Verne, France), Vincent Sobotka, Nicolas Boyard, Didier Delaunay (Université de Nantes, France)

IHTC15-8749/MIN-C1-214

The Freestanding Sensor-Based 3ω Technique for Thermophysical Properties Characterization

Lin Qiu, Xinghua Zheng, Peng Yue, Meng Liu, Dawei Tang (Chinese Academy of Sciences, China)

IHTC15-8725/MIN-C1-215

Method to Analyze the Spatial Current Distribution in an Operating PEFC Based on NMR Measurement Using Small Planar Surface Coils

Kuniyasu Ogawa, Yasuo Yokouchi (Keio University, Japan), Tomoyuki Haishi (MRTechnology, Inc., Japan), Kohei Ito (Kyushu University, Japan)

IHTC15-9775/MIN-C1-216

Study of Thermal Characteristics of Power Mosfet Package under Body-Diode and Saturate Test Conditions

Yafei Luo (Mentor Graphics Japan, Japan), Yasushi Kajita (Nagoya Municipal Industrial Research Institute, Japan), Tomoyuki Hatakeyama, Shinji Nakagawa, Masaru Ishizuka (Toyama Prefectural University, Japan)

Session 22 (C1) [14:00 - 16:00]

MIN2 | Measurement and Instrumentation (2)

Co-Chairs : Kuniyasu Ogawa & Wilko Rohlfs

IHTC15-9132/MIN-C1-221

Non Contact Temperature Field Measurement on Non-Uniform Dynamical Scenes: Contribution of Thermoreflectometry

Remi Gilblas, Thierry Sentenac, Yannick Le Maoult (Institut Clément Ader, France), Daniel Hernandez (Processes, Materials and Solar Energy, France)

IHTC15-9929/MIN-C1-222

Accuracy Verification on 2D Temperature Measurement Method Using CT-Tunable Diode Laser Absorption Spectroscopy Takahiro Kamimoto, Yoshihiro Deguchi, Yusuke Kiyota (The University of Tokushima, Japan)

IHTC15-9934/MIN-C1-223

Simultaneous 2D NH₃ and Temperature Measurement Using CT-Tunable Diode Laser Absorption Spectroscopy Yoshihiro Deguchi, Takahiro Kamimoto, Yusuke Kiyota (The University of Tokushima, Japan)

IHTC15-8853/MIN-C1-224

Cooling of Electronic Components by Steady/Unsteady Air Flow David Altura, Alex Liberzon, Neima Brauner (Tel Aviv University, Israel)

IHTC15-9574/MIN-C1-225

Effect of the Vapor Flow on the Drop Spreading in the Leidenfrost Regime Guillaume Castanet, Ophélie Caballina, Alexandre Labergue, Michel Gradeck, Fabrice Lemoine (University of Lorraine, France)

IHTC15-9918/MIN-C1-226

Cross-Ventilation Measurements in Buildings: Small and Full Scales Experimental Models Julien Salort (Université de Lyon, France/Laboratoire de Physique, France), Hervé Pabiou (Université de Lyon, France), Francesca Chillà (Université de Lyon, France/Laboratoire de Physique, France), Christophe Ménézo (Chaire INSA-EDF, France)

12th, Tuesday

Session 23 (C1) [16:30 - 18:30]

MIN3 | Measurement and Instrumentation (3)

Co-Chairs : Nao Ninomiya & Hervé Pabiou

IHTC15-8595/MIN-C1-231

The Effect of Sonication Time on Effective Thermal Conductivity of Glycerol-MgO Based Nanofluids

Ntumba Tshimanga, Mohsen Sharifpur, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-9800/MIN-C1-232

Thermal-Hydraulic Experiments with Sodium Chloride Aqueous Solution

LiFang Jiao, Wei Liu, Taku Nagatake, Kazuyuki Takase, Hiroyuki Yoshida, Fumihisa Nagase (Japan Atomic Energy Agency, Japan)

IHTC15-8605/MIN-C1-233

Combined Three-Dimensional Flow- and Temperature Field Measurements Using Digital Light Field Photography

Manuel Rietz, Oliver Garbrecht, Wilko Rohlfs, Reinhold Kneer (RWTH Aachen University, Germany)

IHTC15-8855/MIN-C1-234

Temperature Imaging of Water Around a Small Heated Sphere Using a Near-Infrared Absorption Technique

Naoto Kakuta, Kenta Yamada, Ryota Fujioka (Tokyo Metropolitan University, Japan), Katsuya Kondo (Tottori University, Japan), Hidenobu Arimoto (National Institute of Advanced Industrial Science and Technology, Japan), Yukio Yamada (University of Electro-Communications, Japan)

IHTC15-8990/MIN-C1-235

New Estimation Method Based on Integral Transforms for the Thermal Diffusivity Measurement of Anisotropic Materials

Christophe Rodiet, Mathieu Niezgoda, Benjamin Remy, Alain Degiovanni (Université de Lorraine, France)

IHTC15-9380/MIN-C1-236

Visualization and Analysis of Heat and Mass Transfer with Chemical Reactions in Microchannels

Daisuke Kawashima, Naoto Kakuta (Tokyo Metropolitan University, Japan), Katsuya Kondo (Tottori University, Japan), Hidenobu Arimoto (National Institute of Advanced Industrial Science and Technology, Japan), Yukio Yamada (The University of Electro-Communications, Japan)

Session 21 (C2) [9:40 - 11:20]

Co-Chairs : Ai Ueno & Chun Yang

IHTC15-8752/NMS-C2-211

Development of a Mini-Channel Gas Separator Utilizing Soret Effect Naoki Ono, Takahiro Wako, Tomohiro Higurashi (Shibaura Institute of Technology, Japan), Sohei Matsumoto (AIST, Japan)

Room C2

IHTC15-9313/NMS-C2-212

Fabrication and Visualization of a Micro Pulsating Heat Pipe

Kai-Shing Yang (Industrial Technology Research Institute, Taiwan), Yu-Chi Cheng (National Kaohsiung University of Applied Sciences, Taiwan), Ming-Shan Jeng, Kuo-Hsiang Chien (Industrial Technology Research Institute, Taiwan), Jin-Cherng Shyu (National Kaohsiung University of Applied Sciences, Taiwan)

IHTC15-9625/NMS-C2-213

The Influence of Surface Electric Charge on Water Freezing Jia-Wei Zhou, Xiang-Xiong Zhang, Min Chen (Tsinghua University, China)

IHTC15-9130/NMS-C2-214

Effect of Wall Structures on Nano-Channel Flows Haruka Yasuoka, Tomohiko Imae, Masayuki Kaneda, Kazuhiko Suga (Osaka Prefecture University, Japan)

IHTC15-9508/NMS-C2-215

Enhanced Flow Boiling Heat Transfer in Microchannels with Structured Surfaces Yangying Zhu, Dion Antao, Kuang-Han Chu (Massachusetts Institute of Technology, USA), Terry Hendricks (California Institute of Technology, USA), Evelyn Wang (Massachusetts Institute of Technology, USA)

12th, Tuesday

Session 22 (C2) [14:00 - 15:40]

HTE1 | Heat Transfer Enhancement (1)

Co-Chairs : Keiko Fujioka & Janusz Szmyd

IHTC15-8240/HTE-C2-221

Heat Transfer in a 90° T-Junction

Julien Pellé, Olmo Duran Medina, Thien Duy Nguyen, Souad Harmand (TEMPO, France)

IHTC15-9123/HTE-C2-222

Numerical and Experimental Studies of the Flow and Heat Transfer in Circular Tubes with Straight Frame Rotor Inserts Xiaolei Zhu, Ji'an Meng, Hong Zhou, Zhixin Li (Tsinghua University, China)

IHTC15-9615/HTE-C2-223

A Numerical and Experimental Study on Flow and Heat Transfer Characteristics of Viscoelastic Fluid in a Serpentine Channel

Kazuya Tatsumi, Wataru Nagasaka, Takuya Matsuo, Kazuyoshi Nakabe (Kyoto Unveristy, Japan)

IHTC15-9974/HTE-C2-224

Numerical Investigation of Bénard-Marangoni Convection of Paramagnetic Liquid in Annular Lavers

Toshio Tagawa (Tokyo Metropolitan University, Japan)

IHTC15-9062/HTE-C2-225

Investigation of Heat Exchange and Hydrodynamics Parameters in Annular Channels with Interacting Swirling Flows

Alexander Zakharenkov, Eduard Boltenko, Alexander Varava, Aleksev Dedov, Alexander Komov (National Research University, Russia)

Session 23 (C2) [16:30 - 17:50]

Co-Chairs : Masahiro Kawaji & Naoe Sasaki

IHTC15-8825/HTE-C2-231

Numerical Investigation of Fluid Flow and Heat Transfer Characteristics of Partial Length Pin Fins in Vertical Parallel Plate Channel Ravi S. Jadhav, Chakravarthy Balaji (IIT Madras, India)

IHTC15-9372/HTE-C2-232

Thermal Performance of Nanofluids in Microchannel Equipped with a Synthetic Jet Actuator Ann Lee, Dezheng Darson Li, Ghar Ek Lau, Guan Heng Yeoh (The University of New South Wales, Australia)

IHTC15-9259/HTE-C2-233

The Effect of a Crossed Electromagntic Field on Mixed Convection of a Low Pr Fluid in a Vertical Duct

Praveen Throvagunta, N. L Gajbhiye (Indian Institute of Technology Kanpur, India), Viktor Eswaran (Indian Institute of Technology Hyderabad, Medak, India)

IHTC15-9950/HTE-C2-234

An Analysis of Paramagnetic Fluid Thermal Convection in a Concentric Annuli under Strong Magnetic Field Gradient

Witold Wrobel, Elzbieta Fornalik-Wajs, Łukasz Pleskacz (AGH University of Science and Technology, Poland), Sasa Kenjereš (Delft University of Technology, The Netherlands), Janusz S. Szmyd (AGH University of Science and Technology, Poland)

12th, Tuesday

Room D

Session 21 (D) [9:40 - 11:40]

ADS

Adsorption and Desorption

Co-Chairs : Shigeru Koyama & Zhong-Xian Yuan

IHTC15-9289/ADS-D-211

Design and Performance Analysis of an Advanced Thermal Battery for Electric Vehicle Climate Control

Shankar Narayanan, Xiansen Li, Sungwoo Yang, Ian McKay, Hyunho Kim, Evelyn Wang (MIT, USA)

IHTC15-8866/ADS-D-212

Effects of the Induced Charge on CO₂ Adsorption in Cu-BTC at Different Temperature: A Combined Experimental and Molecular Simulation Study

Hui Wang, Zhiguo Qu, Wen Zhang, Wenquan Tao (Xi'an Jiaotong University, China)

IHTC15-9555/ADS-D-213

Theoretical and Experimental Studies on Characteristics of Adsorption Performance of Desiccant Rotor Applied to Desiccant Heat Pump

Shiyu Feng (Nanjing University of Aeronautics and Astronautics), Naoki Nakagawa, Takehiro Koyano, Chaobin Dang, Eiji Hihara (The University of Tokyo, Japan)

IHTC15-9051/ADS-D-214

Inclusion of Non-Isothermal Effects in Modeling Electrochemical Kinetics of Contaminated PEM Fuel Cell Electrodes Saiful Hasmady, Kazuyoshi Fushinobu (Tokyo Institute of Technology, Japan)

IHTC15-9392/ADS-D-215

A Measurement Method of Adsorption/Desorption Rate Controlled by Adsorbent Temperature in Moist Air of Atmospheric Pressure Takafumi Ouchi, Yoshinori Hamamoto, Hideo Mori (Kyushu University, Japan)

IHTC15-9623/ADS-D-216

*Molecular Simulation of CO*₂ Sorption on Mesoporous Material Filled with Polyethylenimine Jiang Li, Weilong Wang, Jing Ding (Sun Yat-sen University, China)

Session 22 (D) [14:00 - 16:00]

BF | Two-phase, Bubble Flow, Water Film

Co-Chairs : Masafumi Katsuta & Axel Sielaff

IHTC15-8960/TBF-D-221

Bubble Growth in Microgravity under the Action of Electric Forces: Experiments and Numerical Simulation

Paolo Di Marco (DESTEC University of Pisa, Italy), Ryo Kurimoto (University of Shiga Prefecture), Giacomo Saccone (DESTEC University of Pisa, Italy), Kosuke Hayashi, Akio Tomiyama (Kobe University, Japan)

IHTC15-8906/TBF-D-222

Study on Liquid Film Thickness of Accelerated Slug Flow in Micro Tubes

Kenshiro Muramatsu (DENSO CORPORATION, Japan), Youngjik Youn (The University of Tokyo, Japan), Youngbae Han (Hongik University, Korea), Keishi Yokoyama, Yosuke Hasegawa, Naoki Shikazono (The University of Tokyo, Japan)

IHTC15-9171/TBF-D-223

Microscale Convective Heat Transfer with Plug Flow in Microchannels Teck Neng Wong, Zhizhao Che (Nanyang Technological University, Singapore), Nam Trung Nguyen (Griffith University, Australia)

IHTC15-8857/TBF-D-224

Measurements of Heat Transfer Coefficients to Cylinders in Shallow Bubble Columns Emily W. Tow, John H. Lienhard V (MIT, USA)

IHTC15-8573/TBF-D-225

Experimental Research on Falling Film Flow Characteristic for Horizontal Drop-shaped Tube Bundle in Cold State

Chao Bai, Lincong Luo, Guanmin Zhang, Maocheng Tian (Shandong University, China), Wei Li (Zhejiang University, China), Yanping Shi (Shanxi Fenxi Heavy Industry Co.,Ltd., China)

IHTC15-8671/TBF-D-226

Study of the Flow and Heat Transfer of Water Film on Hot Air Anti-Icing Airfoil Surface Mei Zheng, Wei Dong, Guilin Lei, Jianjun Zhu (Shanghai Jiao Tong University, China)

47

General Sessions in Series

12th, Tuesday

Session 21 (E) [9:40 - 11:40]

INV Inverse Problems

Co-Chairs : Atsuki Komiya & Yuichi Mitsutake

IHTC15-9796/INV-E-211

Parameter Estimation Using Heat Transfer Models with Experimental Data Using a Combined Ann-Bayesian Approach

Room E

Nagarajan Gnanasekaran (National Institute of Technology Surathkal, India), Nithin, C. Balaji (Indian Institute of Technology Madras, India)

IHTC15-9577/INV-E-212

Recovering the Front Surface Temperature of Metallic and Composite Targets Subject to Localized Heating via Inverse Heat Transfer Modeling Yuwen Zhang, JinnKuen Chen, Zaichun Feng (University of Missouri, USA)

Tuwen Zhang, Sinnikuen Onen, Zaichun Teng (Oniversity of Miss

IHTC15-9764/INV-E-213

Research and Development of Heat Flux Sensor for Thermokinetic Processes Oleg Alifanov, Sergey Budnik, Aleksey Nenarokomov, Andrey Netelev (Moscow Aviation Institute, Russia)

IHTC15-9532/INV-E-214

A Non-Intrusive Inverse Problem Technique for the Identification of Contact Failures in Double-Layered Composites

Luiz Abreu (Federal University of Rio de Janeiro / COPPE, Brazil), Carlos Alves(Technical University of Lisbon, Portugal), Marcelo Colaco (Federal University of Rio de Janeiro / COPPE, Brazil), Helcio R. B. Orlande (Federal University of Rio de Janeiro / COPPE, Brazil)

IHTC15-9473/INV-E-215

Retrieval of Geometric Structure of Internal Defect in Two-Dimensional Semi-Transparent Media under Laser Irradiation Using the RDS-PSO

Hong Qi, Zhenzong He, Teng Jia, Biao Zhang, Liming Ruan (Harbin Institute of Technology, China)

IHTC15-9190/INV-E-216

Estimation of the Heat Transfered to a Fluid in a Minichannel by an Inverse Technique Waseem Al Hadad, Y. Rouizi, Y. Jannot, B. Rémy, D. Maillet (University of Lorraine & CNRS, France) Session 22 (E) [14:00 - 15:40]

Co-Chairs : Helcio Orlande & Hiroshi Takamatsu

IHTC15-9304/BMA-E-221

Experimental Study on the Vascular Thermal Response to Visible Laser Pulses Dong Li, Bin Chen, Wenjuan Wu, Guo-xiang Wang, Y L He (Xi'an Jiaotong University, China), Zhaoxia Ying (University of Akron, USA)

IHTC15-8933/BMA-E-222

Observation of Ice-Solute Interaction in Freezing of Trehalose and Albumin Solutions by Using Confocal Raman Microscope Equipped with Directional Solidification Stage Hideto Hirahata, Yutaka Nagare (Kyushu University, Japan), Alan Twomey (University of Minnesota, USA), Kosaku Kurata, Takanobu Fukunaga (Kyushu University, Japan), Alptekin Aksan (University of Minnesota, USA), Hiroshi Takamatsu (Kyushu University, Japan)

IHTC15-9119/BMA-E-223

Voxel-Based Simulation of Air-Conditioning in the Human Nasal Cavity Gaku Tanaka, Fuyuto Araki, Shun Shimizu (Chiba University, Japan), Toshihiro Sera (Osaka University, Japan), Hideo Yokota, Kenji Ono (Riken, Japan)

IHTC15-9542/BMA-E-224

Blinking and Temperature Gradients in Normal Functioning Human Eye Amanie Abdelmessih (California Baptist University, USA)

IHTC15-8277/BMA-E-225

Investigations on Interactions between Heat Exchanger Biofouling and Suspended Matter Qianpeng Yang, Lin Shi, Siyuan Chang (Tsinghua University, China)

12th, Tuesday

Room F

Session 21 (F) [9:40 - 11:40]

FCV3 Forced Convention (3)

Co-Chairs : Tomoya Houra & Xin-Rong Zhang

IHTC15-8965/FCV-F-211

Experimental Investigation of the Heat Transfer Process at a Gas-Dynamic Method of Energy Separation

Andrey Zditovets, Urii Vinogradov (Moscow State University, Russia), Alexander Titov (OJSC Orgenergogaz, Russia)

IHTC15-9225/FCV-F-212

Heat Transfer and Pressure Drop Characteristics in the Annuli of Tube-in-Tube Heat Exchangers (Horizontal Lay-Out)

Francois P.A Prinsloo, Jaco Dirker, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-9107/FCV-F-213

Gas-Dynamic Temperature Stratification in a Compressible Low-Prandtle Gas Flow on a Permeable Wall Maksim Makarov, Viktor Naumkin (Russian Academy of Sciences, Russia)

IHTC15-9469/FCV-F-214

Flow and Heat Transfer Characteristics of Ammonium Alum Hydrate Slurries with Surfactants as Drag-Reducers and with Polyvinyl Alcohol as Stabilizers Ruri Hidema, Hiroshi Suzuki, Takuya Tano, Yoshiyuki Komoda (Kobe University, Japan)

IHTC15-9210/FCV-F-215

Inlet Flow Effects in Microchannels on Single-Phase Heat Transfer Coefficients and Friction Factors Darshik V. Garach, Jaco Dirker, Josua P. Mever (University of Pretoria, South Africa)

IHTC15-9250/FCV-F-216

Heat Transfer Coefficients for Tubes in the Turbulent Single Phase Flow Regime with a Focus on Uncertainty Madder Stevn, Josua P. Mever (University of Pretoria, South Africa)

Session 22 (F) [14:00 - 15:20]

Co-Chairs : Sanjeev Chandra & Kenji Yoshida

IHTC15-8952/FCV-F-221

An Analytical Study of the Heat Transfer in a Regular-Shaped Micro-Channel Type Stirling Regenerator

ZhiGang Li, Dawei Tang (Chinese Academy of Sciences, China), Yoshihiko Haramura (Kanagawa University, Japan), Miao Zeng (Chinese Academy of Sciences, China), Yohei Kato (Kanagawa University, Japan)

IHTC15-9280/FCV-F-222

Effects of Evaporation and Condensation on Apparent Thermal Slip Marc Hodes, Lisa Lam, Scott MacLachlan (Tufts University, USA), Ryan Enright (Alcatel-Lucent, Ireland)

IHTC15-9409/FCV-F-223

Characteristics of Thermal Convective Flow of Near-Critical CO₂ Fluid in Microchannels Lin Chen, Xin-Rong Zhang (Peking University, China)

IHTC15-9745/FCV-F-224

Experimental Analysis of Gas Forced Convective Heat Transfer in Microtubes under H and T Thermal Boundary Conditions Yahui Yang (University of Bologna, Italy), Chungpyo Hong (Kagoshima University, Japan),

Yahui Yang (University of Bologna, Italy), Chungpyo Hong (Kagoshima University, Japan), Gian Luca Morini (University of Bologna, Italy)

12th, Tuesday

Session 23 (F) [16:30 - 18:10]

FCV5 | Forced Convection (5)

Co-Chairs : Jorge Alvarado & Kazuhiko Suga

IHTC15-8769/FCV-F-231

Volumetric Heat Transfer Determination for Forced Convection of Air through Alumina (Al_2O_3) Foam

Dig Vijay, Pitt Goetze, Rhena Wulf, Ulrich Gross (TU Bergakademie Freiberg, Germany)

IHTC15-9036/FCV-F-232

High Temperature Metal Foam Heat Exchanger

Pakeeza Hafeez, Saeid Salavati, Javad Esmeelpanah, Sanjeev Chandra, Javad Mostaghimi, Tom Coyle (University of Toronto, Canada)

IHTC15-9167/FCV-F-233

Experimental Determination of Convective Heat Transfer Coefficients during Molten Aluminum Purification Using Open Cell Alumina (AL₂O₃) Ceramics

Pitt Goetz, Dig Vijay, Eva Jäeckel, Rhena Wulf, Üllrich Gross, Klaus Eigenfeld (TU Bergakademie Freiberg, Germany)

IHTC15-9489/FCV-F-234

Hydrothermal-Wave Instability and Resultant Flow Patterns Induced by Thermocapillary Effect in a Half-Zone Liquid Bridge of High Aspect Ratio

Ichiro Ueno, Hiroki Kawasaki, Takumi Watanabe, Kosuke Motegi, Toshihiro Kaneko (Tokyo University of Science, Japan)

IHTC15-9852/FCV-F-235

The Effect of Radiative Heat Transfer on Slip Flow through Parallel-Plate Microchannels Mostafa Shojaeian (Sabanci University, Turkey), Rahim Zamanian (Amirkabir University of Technology, Iran), Ali Koşar (Sabanci University, Turkey) Session 21 (G) [9:40 - 11:20]

Co-Chairs : Kyoji Inaoka & Gennady Ziskind

IHTC15-8536/HEX-G-211

Flow and Thermal Performance of Graphite Foam Dimpled Fin Heat Exchangers Wamei Lin (Lund university, Sweden), Gongnan Xie (Northwestern Polytechnical University, China), Bengt Sunden (Lund University, Sweden), Qiuwang Wang (Xi'an Jiaotong University, China)

Room G

IHTC15-9007/HEX-G-212

Entropy Generation Minimization Analysis of Passive and Active Magnetocaloric Regenerators

Paulo Trevizoli, Diego Alcalde, Jader Barbosa (Federal University of Santa Catarina, Brazil)

IHTC15-8908/HEX-G-213

Heat Transfer and Pressure Drop Performance of Offset Strip Fin with Gap between Adjacent Rows

Seongwon Hwang, Ji-Hwan Jeong, Jae Jun Jeong (Pusan National University, Republic of Korea)

IHTC15-8929/HEX-G-214

A Numerical Study on Turbulent Single-Phase Flow and Heat Transfer in Pillow Plates Mark Piper, Alexander Zibart, Julian M. Tran, Eugeny Y. Kenig (University of Paderborn, Germany)

IHTC15-9144/HEX-G-215

Quantitative Estimation of Frost Formation on Plate-Fin Tube Heat Exchanger by Neutron Radiography

Ryosuke Matsumoto, Tomoya Yoshimura, Hisashi Umekawa, Takeyuki Ami (Kansai University, Japan), Daisuke Ito, Yasushi Saito (Kyoto University, Japan)

12th, Tuesday

Session 22 (G) [14:00 - 15:20]

HEX3 | Heat Exchanger (3)

Co-Chairs : Jalaluddin & Hiroshi Suzuki

IHTC15-9435/HEX-G-221

Enhanced Melting in Geometries Suitable for Thermal Energy Storage Tomer Rozenfeld, Yoram Kozak, Gennady Ziskind (Ben-Gurion University, Israel)

IHTC15-9085/HEX-G-222

Fin Efficiency and the Optimisation of X-Shaped Louvered Fins Bernd Ameel, Joris Degroote, Henk Huisseune, Jan Vierendeels, Michel De Paepe (Ghent University, Belgium)

IHTC15-9362/HEX-G-223

The Effect of the Circular Cylinder's Insertion Position on Heat Transfer Enhancement in Transition Flow

Hui Xu (Jiangsu University, China), Lijuan Wang (Nantong University, Cina), Kyoji Inaoka (Doshisha university, Japan), Guannan Xi (Nantong University, China)

IHTC15-9194/HEX-G-224

Study of Heat Pipe Effectiveness Filled with Different Refrigerants Grzegorz Gorecki (Lodz University of Technology, Poland)

Session 23 (G) [16:30 - 18:30]

Co-Chairs : Jader Barbosa & Hisashi Umekawa

IHTC15-9766/HEX-G-231

Numerical Simulation of 3D Flow Effect on Heat Transfer from a Tube Bank of Subsea Cooler Nikolay Ivanov, Vladimir Ris, Evgueni M. Smirnov, Nikolay Tschur (St.Petersburg State Polytechnic University, Russia)

IHTC15-9041/HEX-G-232

Effect of Fin Specification on Thermal Performance of Fin-Tube Heat Exchanger for Heat Pump under Frosting Condition Jeongkeun Kim, Keumnam Cho (Sungkyunkwan University, Korea)

IHTC15-9644/HEX-G-233

CFD Modelling of Flow over in-Line Tube-Banks Hector Iacovides, Brian Launder, Alastair West (University of Manchester, United Kingdom)

IHTC15-9093/HEX-G-234

Maximal Velocity Ratio Design Method for Shell-and-Tube Heat Exchangers with Continuous Helical Baffles Jianfeng Yang, Min Zeng, Guidong Chen, Qiuwang Wang (Xi'an Jiaotong University, China)

IHTC15-9791/HEX-G-235

Optimization of Lifetime Expectance for Heat Exchangers with Special Requirements Pascal Freko, Ingo Thomas, Reinhold Hoelzl, Axel Lehmacher, Alexander Woitalka (Linde AG, Germany)

IHTC15-9449/HEX-G-236

Size Effect of the Flow Path on the Flow and Heat Transfer Characteristics in a Cavity Swept by a Visco-Elastic Fluid Hiroshi Suzuki, Ruri Hidema, Yoshiyuki Komoda (Kobe University, Japan)

12th, Tuesday

Room H

Session 21 (H) [9:40 - 11:00]

EEC1 | Electronic Equipment Cooling (1)

Co-Chairs : Martine Baelmans & Shinji Nakagawa

IHTC15-8910/EEC-H-211

Transient Thermal Behavior of the Microprocessor System - Investigation of Effects by Distributed Thermal Capacitance and Thermal Spreading Resistances

Koji Nishi (Advanced Micro Devices Japan, Japan), Tomoyuki Hatakeyama, Shinji Nakagawa, Masaru Ishizuka (Toyama Prefectural University, Japan)

IHTC15-8951/EEC-H-212

An 1-D Model for Species Crossover through the Membrane in All-Vanadium Redox Flow Batteries

Yuan Lei, Baowen Zhang, Bofeng Bai (Xi'an Jiaotong University, China), Tianshou Zhao (The Hong Kong University of Science and Technology, China)

IHTC15-8327/EEC-H-213

A Miniature Multiple Vibrating-Fan Cooling System Using Magnetic Force and Piezoelectric Force

HsienChin Su (Purdue University, USA), Chunlin Liu (National Taiwan University, Taiwan)

IHTC15-9808/EEC-H-214

Liquid Film Wave Patterns and Dryout in Microgap Channel Annular Flow Caleb Holloway, Avram Bar-Cohen, Darin Sharar (University of Maryland, USA) Session 22 (H) [14:00 - 15:20]

Co-Chairs : Masaru Ishizuka & Nick Jeffers

IHTC15-9594/EEC-H-221

Conjugate Forced Convection-Conduction Heat Transfer in Channel Flow Using Different Cooling Fluids

Felipe Baptista Nishida, Yara de Souza Tadano, Thiago Antonini Alves (Federal Technological University of Paraná, Brazil)

IHTC15-9396/EEC-H-222

Development of In-Plane Thermal Conductivity Measurement Method of Multi-Layer Printed Wiring Boards Called Straight Fin Temperature Fitting Method Tetsuro Ogushi (Hiroshima International University, Japan), Kumi Aoki, Takashi Kobayashi,

Yuta Niki (Mitsubishi Electric Corporation, Japan), Takuya Hirata (ESPEC Corporation, Japan)

IHTC15-8546/EEC-H-223

L-Shaped Thermosyphon Loop with Vertical Evaporator for Power Electronics Cooling Francesco Agostini, Thomas Gradinger (ABB Corporate Research Center, Switzerland)

IHTC15-9420/EEC-H-224

Performance Evaluation of Micro-Jet Impingement on Various Dimpled Surfaces Sun-Min Kim, Kwang-Yong Kim (Inha University, Korea)

12th, Tuesday

Session 23 (H) [16:30 - 17:50]

EEC3 **Electronic Equipment Cooling (3)**

Co-Chairs : Francesco Agostini & Tetsuro Ogushi

IHTC15-9166/EEC-H-231

The Forced Circulation Cooling System with Rectangular Mini-Channels for the Inverter of Electric Vehicles

Jiwon Yeo (Kyushu University, Japan), Daisuke Jige (Tokyo University of Marine Science and Technology, Japan), Seiya Yamashita, Shigeru Koyama (Kyushu University, Japan)

IHTC15-9936/EEC-H-232

Practical Measurement System for Very Large Scale Integration Circuits Using Infrared Thermography

Yuan-Ta Hsieh, Jian-Fu Wu, Chiao-Li Fang, Hann-Huei Tsai, Ying-Zong Juang (National Applied Research Lobortories, Taiwan)

IHTC15-9227/EEC-H-233

Heat Transfer and Fluid Mechanics from a Piezoelectric Fan Operating in Its Second Resonant Frequency Mode

Nick Jeffers, Jason Stafford, Brian Donnelly (Alcatel-Lucent, Ireland)

IHTC15-9115/EEC-H-234

Convolution Based Steady State Compact Thermal Model for 3D Integrated Circuits: Methodology for Including the Thermal Impact of Die to Die Interconnections

Federica Lidia Teresa Maggioni, Herman Oprins, Eric Beyne, Ingrid De Wolf (Interuniversity Microelectronics Centre/ Katholieke Universiteit Leuven, Belgium), Martine Baelmans (Katholieke Universiteit Leuven, Belgium)

Session 21 (I) [9:40 - 11:20]

Co-Chairs : Stephan Kabelac & Yasuyuki Takata

IHTC15-9050/TPP-I-211

Tailoring Radiative Property of Two-Dimensional Complex Grating Structures Sunwoo Han, Bong Jae Lee (Korea Advanced Institute of Science and Technology, South Korea)

Room I

IHTC15-9505/TPP-I-212

Molecular Simulation of Water Sorption and Diffusion Characterizaton in Cation-Exchanged ZSM-5

Hongyin Chen, Jing Ding, Weilong Wang (Sun Yat-sen University, China), Xiaolan Wei (South China University of Technology, China), Jianfeng Lu (Sun Yat-Sen University, China)

IHTC15-9220/TPP-I-213

Diffusion of Carbon Dioxide in Decane by MRI Technique Hao Min, Yongchen Song, Yuechao Zhao, Yu Liu, Bo Su, Lanlan Jiang, Xinhuan Zhou, Lingvue Tang (Dalian University of Technology, China)

IHTC15-9664/TPP-I-214

Heat Transport Along Polar Nanofilms Due to Surface Phonon-Polaritons Jose Ordonez-Miranda, Laurent Tranchant (École centrale Paris, France), Beomjoon Kim (The University of Tokyo, Japan), Yann Chalopin, Thomas Antoni, Sebastian Volz (École centrale Paris, France)

IHTC15-8917/TPP-I-215

Thermal Conductivity of Silicon Nanofilms Predicted by Combined Phonon Hydrodynamics and Phonon Gas Dynamics

Yuan Dong, Bing-Yang Cao, Zeng-Yuan Guo (Tsinghua University, China)

12th, Tuesday

Session 22 (I) [14:00 - 16:00]

TPP4 | Thermophysical Properties (4)

Co-Chairs : Junnosuke Okajima & Huaging Xie

IHTC15-8604/TPP-I-221

Investigation into the pH and Electrical Conductivity Enhancement of MaO-Ethylene Glycol Nanofluids

Saheed Adewale Adio, Mohsen Sharifpur, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8606/TPP-I-222

Combined Influence of Size and Sonication on Constant Shear Viscosity of MgO-Ethvlene Glvcol Nanofluids

Saheed Adewale Adio, Mohsen Sharifpur, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-9160/TPP-I-223

Evaporation of Nanofluids Jan Eggers, Stephan Kabelac (Leibniz University Hannover, Germany)

IHTC15-8643/TPP-I-224

Frost Formation and Growth on Hydrophilic, Hydrophobic, and Biphilic Surfaces Alexander Van Dyke, Amy Betz (Kansas State University, USA)

IHTC15-8835/TPP-I-225

A Non-Equilibrium Molecular Dynamics Study on Thermal Transport in Functionalized Carbon Nanotube/Polvmer Nanocomposites

Youdi Kuang, Baoling Huang (The Hong Kong University of Science and Technology, China)

IHTC15-8348/TPP-I-226

Two Different Methods for Determination of Exothermic Reaction Enthalpies from Temperature Measurements in Beechwood Cylinders during Torrefaction

Andreas Ohliger, Paul-Martin Steffen, Reinhold Kneer (RWTH Aachen University, Germany)

Session 23 (I) [16:30 - 18:30]

Co-Chairs : Dominic Groulx & Gaku Tanaka

IHTC15-9169/TST-I-231

Non-Isothermal Kinetics of Zeolite Water Vapor Adsorption into a Packed Bed Lab Scale Thermochemical Reactor

Mohammadreza Gaeini (Eindhoven University of Technology, The Netherlands), Herbert Zondag (Eindhoven University of Technology, The Netherlands/Energy Research Centre of the Netherlands. The Netherlands). Camilo Rindt (Eindhoven University of Technology. The Netherlands)

IHTC15-9987/TST-I-232

A Composite Mesoporous Material for an Open Sorption Thermal Energy Storage System Hongzhi Liu, Katsunori Nagano, Daichi Sugiyama, Junya Togawa, Makoto Nakamura (Hokkaido University, Japan)

IHTC15-8881/TST-I-233

Investigation of Heat and Mass Transfer in a Magnesium Hydride Heat Storage Reactor Dan Shen, Changying Zhao, Qian Wang (Shanghai Jiao Tong University, China)

IHTC15-8892/TST-I-234

Heat Transfer in Latent Heat Thermal Energy Storage Device for Automobile Applications Duke Po-Chen Shih, Honghi Tran, Masahiro Kawaji (University of Toronto, Canada), Matthew Birkett, John Burgers (Dana Thermal Products, Canada)

IHTC15-8518/TST-I-235

Experimental and Numerical Investigation of Phase Change Heat Transfer Characteristics in Open-Cell Metal Foam Infiltrated with Eutectic Salt for Solar Energy Storage Peng Zhang, Xin Xiao (Shanghai Jiao Tong University, China), Ming Li (Yunnan Normal University, China)

IHTC15-8753/TST-I-236

Performance Analysis of the Molten-Salt Thermal Storage System Filled by PCM Capsules with Cascaded Melting Temperatures

Chao Xu (North China Electric Power University, China), Ming Wu (Xi'an Jiaotong University, China), Xing Ju, Xiaoze Du (North China Electric Power University, China), Yaling He (Xi'an Jiaotong University, China), Yuanyuan Li (North China Electric Power University, China)

12th, Tuesday

Room J

Session 21 (J) [9:40 - 11:20]

CDS3

Co-Chairs : Yutaka Abe & Xuehu Ma

Condensation (3)

IHTC15-9602/CDS-J-211

In-tube Condensation of Low GWP Mixture Refrigerants R1234ze(E)/R32 Akio Miyara (Saga University, Japan), Hasan M. M. Afroz (Dhaka University of Engineering and Technology, Bangladesh), MD. Anowar Hossain (Dhaka University of Engineering and Technology, Bangladesh)

IHTC15-9758/CDS-J-212

Condensation Heat Transfer of R-410A and R-22 in U-Tubes Liang-Han Chien, Cheng-Sheng Liu (National Taipei University of Technology, Taiwan)

IHTC15-9887/CDS-J-213

Study on Computational Method of Filmwise Non-Equilibrium Condensation Tsubasa Ohshima (Hitachizosen Corporation, Japan), Takeo Kajishima (Osaka University, Japan)

IHTC15-8532/CDS-J-214

A New Model for Refrigerant Condensation inside a Brazed Plate Heat Exchanger (BPHE) Giovanni A. Longo, Giulia Righetti, Claudio Zilio (University of Padova, Italy)

IHTC15-9416/CDS-J-215

Nitrogen Liquefaction: A Prototype Plant

Mario De Salve (Politecnico di Torino, Italy), Davide Milani (Criotec Impianti S.r.I., Italy), Bruno Panella (Politecnico di Torino, Italy), Guido Roveta (Criotec Impianti S.r.I., Italy)

Session 22 (J) [14:00 - 16:00]

Co-Chairs : Nenad Miljkovic & Tetsuaki Takeda

IHTC15-9335/CDS-J-221

The Enhancement of Steam Condensation Heat Transfer on a Horizontal Tube by Addition of Ammonia

Bin Dong, Jun Zhao, Shixue Wang, Minghui Ge, Yulong Zhao (Tianjin University, China), Kunfeng Liang (Henan University of Science and technology, China)

IHTC15-9609/CDS-J-222

Droplet Departure Characteristics for Steam Dropwise Condensation at Low Pressure Xuehu Ma, Rongfu Wen, Zhong Lan, Benli Peng, Wei Xu (Dalian University of Technology, China)

IHTC15-9177/CDS-J-223

Wettability-Driven Water Condensation at the Micron and Submicron Scale Yutaka Yamada, Akira Kusaba, Tatsuya Ikuta, Takashi Nishiyama, Koji Takahashi, Yasuyuki Takata (Kyushu University, Japan)

IHTC15-9801/CDS-J-224

Bulk Condensation of Supersaturated Vapor with Allowance of Temperature Distribution of Droplets

Naum Kortsenshteyn (G.M. Krzhizhanovsky Power Engineering Institute, Russia), Arseniy Yastrebov (Moscow Power Engineering Institute, Russia)

IHTC15-9895/CDS-J-225

Study of the Heat Transfer and Flow Characteristic of an Ultra Micro Steam Injector Taichi Koshiji, Yutaka Abe, Akiko Kaneko (University of Tsukuba, Japan), Yutaka Suzuki (WELCON Inc, Japan)

IHTC15-8969/CDS-J-226

Condensation of Water from Saturated Air in a Compact Plate Condenser with Application to Water Balance in Proton Exchange Membrane Fuel Cell Systems Ashley Fly, Rob Thring (Loughborough University, UK)

12th, Tuesday

Session 23 (J) [16:30 - 18:30]

CDS5 | Condensation (5)

Co-Chairs : Takaharu Tsuruta & Arseniy Yastrebov

IHTC15-9002/CDS-J-231

Study of the Vapor Superheat Effect on Heat Transfer in Plate Heat Exchanger Based on Infrared Thermography

Kifah Sarraf, Stéphane Launay, Lounès Tadrist (Aix-Marseille University, France)

IHTC15-8896/CDS-J-232

Electric-Field-Enhanced Jumping-Droplet Condensation

Nenad Milikovic, Daniel J. Preston (Massachusetts Institute of Technology, USA), Rvan Enright (Bell Labs, USA), Evelyn N. Wang (Massachusetts Institute of Technology, USA)

IHTC15-9082/CDS-J-233

Study on the Compact Steam Dump Device Development for the Damage Reduction of the Condenser Tube

HyunSoo Kim, Won-Seok Kim, Jong-Wook Lee (BHI.CO., LTD., Korea)

IHTC15-8916/CDS-J-234

Parameter Comparison of Condensation Heat Transfer of R134a Outside Horizontal Low-Finned Tubes

Ding-cai Zhang (Zhongyuan University of Technology, China), Wen-tao Ji (Xi'an Jiaotong University, China), Jia-di Du, Zhen Zhang, Xiao-wei Fan (Zhongyuan University of Technology, China) Ya-Ling He, Wen-Quan Tao (Xi'an Jiaotong University, China)

IHTC15-9161/CDS-J-235

Analysis of the Condensate Carryover Phenomenon on Fin and Tube Evaporators Emilio Navarro-Peris, Jose Corberan, Jose Gonzálvez-Maciá (Universidad Politécnica València, Spain), Miguel Zamora (Compañía Industrial de Aplicaciones Térmicas, Spain)

IHTC15-9296/CDS-J-236

Effect of Hvdrocarbon Adsorption on the Wetting of Rare Earth Oxides

Daniel J. Preston, Nenad Miljkovic, Jean Sack (Massachusetts Institute of Technology, USA), Ryan Enright (Bell Labs, USA), John Queency, Evelyn N. Wang (Massachusetts Institute of Technology, USA)

Session 21 (K) [9:40 - 11:20]

Energy Conversion and Storage

Co-Chairs : Yukihiko Okumura & Yu Wei

IHTC15-9174/ECS-K-211

Study on the Improvement of the Performance of a Novel Adsorption Heat Pump System for Generating High-temperature Steam Koichi Nakaso, Shunsuke Kobayashi, Shotaro Eshima, Jun Fukai (Kyushu University, Japan)

Room K

IHTC15-9820/ECS-K-212

Benchmark Numerical Simulations of Solar Thermoelectric Generators Shenghui Lei, Ronan Frizzell, Rvan Enright (Bell Labs, USA)

IHTC15-9326/ECS-K-213

Efficient Utilization of the Electrodes in a Redox Flow Battery by Modifying Flow Field and Electrode Morphology Shohji Tsushima, Fumiya Kondo, Sho Sasaki, Shuichiro Hirai (Tokyo Institute of Technology, Japan)

IHTC15-8552/ECS-K-214

Experimentally Determined Thermal Parameters of an Energy Conversion Device Using a Constraint Least Square Parameter Estimation Method Coupled with an Analytical Thermal Model

Jonathan Hey (Imperial College London, UK), Adam Malloy (EVO Electric Ltd., UK), Ricardo Martinez-Botas (Imperial College London, UK), Michael Lamperth (EVO Electric Ltd., UK)

IHTC15-9402/ECS-K-215

Effect of Thermal Conductivity Enhancement of Thermochemical Energy Storage Material on Unused Heat Utilization System

Yukitaka Kato, Massimiliano Zamengo (Tokyo Institute of Technology, Japan), Keiko Fujioka (Functional Fluids Ltd., Japan)

12th, Tuesday

Session 22 (K) [14:00 - 15:20]

EEF1

Energy Efficiency (1)

Co-Chairs : Wolfgang Heidemann & Yukitaka Kato

IHTC15-8661/EEF-K-221

Pilot Test and Model Analysis of Plastic Heat Exchanger for Flue Gas Heat Recovery Lin Chen, Xiaoze Du, Jiangtao Liang, Yingying Sun, Lijun Yang, Gang Xu (North China Electric Power University, China)

IHTC15-8390/EEF-K-222

Thermo-Electricity Analogy Method for Computing Transient Heat Transfer In a New Reciprocating Finned Piston Compressor

Mahbod Heidari, Kiarash Gharibdoust, Alfred Rufer, John Richard Thome (École Polytechnique Fédérale de Lausanne, Switzerland)

IHTC15-9767/EEF-K-223

Heat Transfer Analysis of Blast Furnace Tuyere through CFD Simulation Yan Chen, Bin Wu, Xingjian Chen, Anfani Okosun, Dong Fu (Purdue University Calumet, USA), Thomas R. Hensler, Donald Zuke, Sergey Trenkinshu (ArcelorMittal, USA), Chenn Q. Zhou (Purdue University Calumet, USA)

IHTC15-9020/EEF-K-224

Entransy Based Optimization on Data Center Cooling Process and Its Application Hao Tian, Zhen Li, Zhiguang He (Tsinghua University, Beijing)

Session 23 (K) [16:30 - 17:50]

EEF2 Energy Efficiency (2)

Co-Chairs : Masafumi Hirota & Chenn Q. Zhou

IHTC15-8843/EEF-K-231

Treated Aluminum as Highly Reflective Facade Materials for Energy-Efficient Buildings Takeshi Ihara, Tao Gao, Arild Gustavsen (Norwegian university of science and technology, Norway), Bjørn Petter Jelle (SINTEF Building and Infrastructure, Norway)

IHTC15-9681/EEF-K-232

Application of Micro-Channel Heat Exchanger in Refrigerated Display Cabinet Chengcheng Tian (China Northwest Architecture Design and Research Institute CO.LTD, China), Hongqi Li (Beijing University of Technology, China)

IHTC15-8632/EEF-K-233

Energy Efficient Cooling of Switch Cabinets Using Optimized Internal Settings Wolfgang Heidemann, Christian Staub, Klaus Spindler (University of Stuttgart, Germany)

IHTC15-8995/EEF-K-234

A Numerical Solution Algorithm for a Heat and Mass Transfer Model of a Desalination System Based on Packed-Bed Humidification and Bubble Column Dehumidification Karim Chehayeb (Massachusetts Institute of Technology, USA), Farah Cheaib (American University of Beirut, USA), John Lienhard V (Massachusetts Institute of Technology, USA)

13th, Wednesday

Room B1

Session 31 (B1) [8:20 - 10:00]

FBL3 | Flow Boiling (3)

Co-Chairs : Tomoaki Kunugi & Stephane Launay

IHTC15-9867/FBL-B1-311

A Study on Post-CHF Heat Transfer at Near-Critical Pressure

Takashi Mawatari, Hideo Mori (Kyushu University, Japan), Keishi Kariya (Saga University, Japan)

IHTC15-9840/FBL-B1-312

Effect of Heat Transfer Surface Structure on Boiling Heat Transfer and Flow Characteristics in a Horizontal Narrow Channel

Hitoshi Asano, Junpei Yoshidome, Taisaku Gomyo (Kobe University, Japan)

IHTC15-9214/FBL-B1-313

Boiling Investigation in the Microchannel with Nano-Particles Coating

Yuri Kuzma-Kichta (Moscow Power Engineering Institute, Russia), Aleksandr Leontyev (Bauman State Technical University, Russia), Aleksandr Lavrikov, Mikhail Shustov (Moscow Power Engineering Institute, Russia), Koichi Suzuki (Tokyo University of Science-Yamaguchi, Japan)

IHTC15-9072/FBL-B1-314

Flow Boiling under Microgravity Conditions Comparative Study of Two Experimental Data Sets

Marine Narcy (Institute of Fluid Mechanics of Toulouse, France), Alexander Scammell (University of Maryland, USA), Catherine Colin (Institute of Fluid Mechanics of Toulouse, France), Jungho Kim (University of Maryland, USA)

IHTC15-9333/FBL-B1-315

Micro Liquid Film Heat Transfer and Critical Heat Flux of Flow Boiling in Micro-Channels Yu Yan Jiang, Tao Wang, Zhicheng Wang, Dawei Tang (Chinese Academy of Sciences, China)

Session 32 (B1) [10:30 - 12:30]

Co-Chairs : Catherine Colin & Yoshihiko Haramura

IHTC15-9284/PBL-B1-321

Numerical Simulation of Pool Boiling from Artificial Cavities Using the Phase Field Method Aravind Sathyanarayana (Georgia Institute of Technology, USA), Yogendra Joshi (Georgia Institute of Technology, USA)

IHTC15-8590/PBL-B1-322

Numerical Simulation of Boiling from a Single Reentrant-Cavity Jochen Dietl (Technische Universität Darmstadt,Germany), Peter Stephan (Technische Universität Darmstadt, Germany)

IHTC15-8851/PBL-B1-323

Direct Numerical Simulations of Subcooled Boiling Phenomena Based on Non-Empirical Boiling and Condensation Model Yasuo Ose (Yamato System Engineer, Japan), Tomoaki Kunugi (Kyoto University, Japan)

IHTC15-8911/PBL-B1-324

Numerical Simulation on Bubble Growth Process and Heat Transfer Characteristics with Microlayer Evaporation in Nucleate Boiling for Water Zhihao Chen, Yoshio Utaka (Yokohama National University, Japan)

IHTC15-9631/PBL-B1-325

Effect of Surface Wettability on Subcooled Boiling Heat Transfer Yasushi Saito, Daisuke Ito (Kyoto University, Japan)

IHTC15-8817/PBL-B1-326

Boiling Heat Transfer Theory: To Overcome Historical Deadlock Irakli G. Shekriladze (Georgian Technical University, Georgia)

13th, Wednesday

Room B2

Session 31 (B2) [8:20 - 10:00]

TPF1

Two-phase, Flow Behavior (1)

Co-Chairs : Satoru Momoki & Mark Spector

IHTC15-8981/TPF-B2-311

Analysis of Two-Phase Flow Behavior in a Sharp Return Bend Using Capacitive Measurements

Kathleen De Kerpel, Michel De Paepe (Ghent University, Belgium)

IHTC15-9810/TPF-B2-312

Non-Equilibrium Discharging Flow From Safety Valves

Yoshihiko Kitagawa, Sachiyo Horiki, Masahiro Osakabe (Tokyo University of Marine Science & Technology, Japan)

IHTC15-8971/TPF-B2-313

Visualization of Ammonia Boiling Flow Phenomena Inside Narrow Flat Plates Hirofumi Arima, Fumiya Mishima, Kohei Koyama, Yasuyuki Ikegami (Saga University, Japan)

IHTC15-8720/TPF-B2-314

Dynamic Flow Structures in the Wakes of Sliding Bubbles for Convective Heat Transfer Enhancement

Rudi O'Reilly Meehan (Trinity College Dublin, Ireland), Brian Donnelly (Bell Labs, Ireland), Tim Persoons, Darina Murray (Trinity College Dublin, Ireland)

IHTC15-8927/TPF-B2-315

Structure of Two-Phase Swirl Flow in Various Channels Anatoly Yakovlev, Stanislav Tarasevich, Andrey Shishkin (Kazan National Research Technical University, Russia) Session 32 (B2) [10:30 - 11:50]

Co-Chairs : Michel de Paepe & Takehiko Yokomine

IHTC15-9876/TPF-B2-321

Correlation of Transition Boundaries to and from Annular Flow Regime of Ammonia Evaporating Inside a Horizontal Internally Spirally Grooved Tube Satoru Momoki (Nagasaki University, Japan), Hirofumi Arima (Saga University, Japan), Yasuto Takashiba, Tomohiko Yamaguchi, Soichi Sasaki (Nagasaki University, Japan)

IHTC15-9376/TPF-B2-322

Effect of Flow Pattern on Critical Heat Flux Takeyuki Ami, Goshi Yamashina, Hisashi Umekawa, Mamoru Ozawa (Kansai University, Japan)

IHTC15-9005/TPF-B2-323

A Phenomenological Model of Dryout with Circumferentially Varying Heat Flux Jonathan Manning (Imperial College London, UK), Geoffrey F. Hewitt (Imperial College of Science, Technology & Medicine, UK), Simon Walker (Imperial College London, UK)

IHTC15-9023/TPF-B2-324

Study on High-Void Fraction Gas-Liquid Two-Phase Flow in Tube Bundle Yoshiyuki Kondo, Ling Cheng, Seiho Utsumi, Takashi Ueno, Ryoichi Kawakami, Kengo Shimamura (Mitsubishi Heavy Industries, Ltd., UK)

13th, Wednesday

Room C1

Session 31 (C1) [8:20 - 9:40]

Impinging Jet

IPJ

Co-Chairs : Krishnamurthy Muralidhar & Niro Nagai

IHTC15-9035/IPJ-C1-311

Heat Transfer Measurements from Concave and Convex Surfaces with a Fully Developed Confined Impinging Slot Jet

Seong Jung Kim, Yeong Hwan Kim, Hyun Jin Park, Dae Hee Lee (Inje University, Korea), Phillip Ligrani (Saint Louis University, USA)

IHTC15-8838/IPJ-C1-312

Transient Flow and Thermal Performance of Integrated Deflector under Periodic Supersonic Flame Impingement

JiaJie Zhang, Zhiguo Qu, RuiPeng Fu, YaLing He (Jiaotong University, China)

IHTC15-9047/IPJ-C1-313

Experimental and Numerical Investigation of the Flow behind a Sphere Moving Vertically in a Stratified Fluid

Shinsaku Akiyama, Shota Nakamura, Shinya Okino, Hideshi Hanazaki (Kyoto University, Japan)

IHTC15-9385/IPJ-C1-314

Heat transfer Enhancement for Row of Impinging Jets in Cross-Flow with Some Baffle Attachments

Rattanakorn Pansang, Makatar Wae-hayee, Passakorn Vessakosol, Chayut Nuntadusit (Prince of Songkla University, Thailand)

Session 32 (C1) [10:30 - 12:30]

Co-Chairs : Carlos Coimbra & Koji Matsubara

IHTC15-8834/RNE-C1-321

Numerical Assessment and Optimization of Wind Farm on Complex Terrain MengXuan Song, BingHeng Wu, Kai Chen, ZhongYang He, Xing Zhang (Tsinghua University, China)

IHTC15-9869/RNE-C1-322

Numerical Modelling of Combined Natural Convection and Surface Radiation Heat Transfer in Cavity Receiver with Plate Fins Lloyd C. Ngo (University of Pretoria, South Africa), Tunde Bello-Ochende (University of Cape

Town, South Africa), Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8963/RNE-C1-323

Prediction of the First Pyrolysis Product and Yield in Biomass Gasifier Yukihiko Okumura (Maizuru National College of Technology, Japan), Takuya Okada, Ken Okazaki (Tokyo Institute of Technology, Japan)

IHTC15-9817/RNE-C1-324

A Numerical Study on Bed Temperature and Gasifying Agent Effetcs on the Sugarcane Bagasse Gasification Process

Gabriel Verissimo, Jean de Pinho, Albino Leiroz, Manuel Ernani Cruz (Federal University of Rio de Janeiro, Brazil)

IHTC15-8989/RNE-C1-325

Optimal Sizing of Heat Exchangers for Organic Rankine Cycles (ORC) Based on Thermo-Economics Steven Lecompte, Martijn van den Broek, Michel De Paepe (Ghent University, Belgium)

IHTC15-9916/RNE-C1-326

Anatical Solution of Nanofluid Volumetric Receiver

Seung-Hyun Lee, Hyun Jin Kim, Yong-Jun Park, Kyu Han Kim, Seok Pil Jang (Korea Aerospace University, Korea)

13th, Wednesday

Room C2

Session 31 (C2) [8:20 - 10:20]

HTE3

3 Heat Transfer Enhancement (3)

Co-Chairs : Yutaka Shibata & Teck Neng Wong

IHTC15-8750/HTE-C2-311

A Numerical Study of Fluid and Heat Transfer Performance of Heat Exchangers with Novel Short-Circuit Prevention Helical Baffles

Wenjing Du, Hongfu Wang, Gongming Xin, Shusheng Zhang, Lin Cheng (Shandong University, China)

IHTC15-9424/HTE-C2-312

Numerical Study of Flow and Heat Transfer Characteristics of Different Distributed Corrugated Tube Bundles

Wei Shao, Bing-xi Li, Hao Wu, Ya-ning Zhang, Zhi Xu (Harbin Institute of Technology, China)

IHTC15-8727/HTE-C2-313

Mathematical Derivation on Heat Transfer Improvement of the Air-Cooled Condenser Cell in a Power Plant

Hui Zhang, Haocheng Zhou, Yujin Yue, Lijun Yang, Xiaoze Du, Yongping Yang (North China Electric Power University, China)

IHTC15-9931/HTE-C2-314

Analysis on Optimal Configuration of Air-Foil Shaped Printed Circuit Heat Exchanger in Supercritical Carbon Dioxide Power Cycle

Sung Ho Yoon (POSTECH, Republic of Korea, KINAC, Republic of Korea), Jin Gyu Kwon, Tae Ho Kim, Hyun Sun Park (POSTECH, Republic of Korea), Moo Hwan Kim (POSTECH, Republic of Korea, KINS, Republic of Korea)

IHTC15-8719/HTE-C2-315

New Correlations for Heat Transfer and Pressure Drop for Serrated and Solid Fin Tube Bundles

Anna Holfeld, Erling Næss (Norwegian University of Science and Technology, Norway)

IHTC15-8867/HTE-C2-316

Model-Based Optimization of Three-Dimensional Complex Structure for Heat Transfer Enhancement in Single-Phase Flows

Yosuke Hasegawa, Naoki Shikazono (The University of Tokyo, Japan)

Session 32 (C2) [10:30 - 12:30]

HTE4 Heat Transfer Enhancement (4)

Co-Chairs : Yosuke Hasegawa & Guannan Xi

IHTC15-9180/HTE-C2-321

Thermal-Hydraulic Performance of a Printed Circuit Heat Exchanger in a CO_2 -H₂O Heat Exchange Process under Different Mass Flow Rates

Xiangyang Xu, Ting Ma, Lei Li, Min Zeng, Qiuwang Wang (Xi'an Jiaotong University, China), Yitung Chen (University of Nevada, USA)

IHTC15-9262/HTE-C2-322

Heat Transfer Characteristics in Forced Convection through a Rectangular Channel with V-Shaped Rib Roughened Surfaces Damiano Fustinoni, Pasqualino Gramazio, Luigi Colombo, Alfonso Niro (Politecnico di Milano, Italv)

IHTC15-8718/HTE-C2-323

Influence of the Fin Type and Base Tube Diameter of Serrated and Solid-Fin Tubes on the Heat Transfer and Pressure Drop Performance Anna Holfeld, Erling Næss (Norwegian University of Science and Technology, Norway)

IHTC15-8827/HTE-C2-324

Heat Transfer Enhancement in Heat Exchanger with Dimpled/ Protruded Surface Tsz Kit Tang, Ann Lee (the University of New South Wales, Australia), Guan Heng Yeoh (the University of New South Wales, Australia, Australian Nuclear Science and Technology Organisation, Australia)

IHTC15-9864/HTE-C2-325

Pool Boiling of Hydrocarbon Mixture in Kettle-Reboiler with Low-Finned Tubes Elise Estiot, Carsten Richardt (Linde AG - Engineering Division, Germany)

IHTC15-9299/HTE-C2-326

*In-Tube Convective Heat Transfer Charateristics of CO*₂-*Hydrate Mixture* Hanvit Park, Rin Yun (Hanbat National University, South Korea)

13th, Wednesday

Room F

Session 31 (F) [8:20 - 10:00]

FCV6 | Forced Convection (6)

Co-Chairs : Yasuo Hattori & Marc Hodes

IHTC15-8378/FCV-F-311

Influence of Local Flow Acceleration on the Heat Transfer of Submerged and Free-Surface Jet Impingement

Wilko Rohlfs, Claas Ehrenpreis, Herman.D. Haustein, Oliver Garbrecht, Reinhold Kneer (RWTH Aachen University, Germany)

IHTC15-9295/FCV-F-312

Thermo-Hydrodynamic Characteristics of Magnetothermal Wind Created in a Tube in Gravitational and Nongravitational Fields

Taku Okitsu, Masato Akamatsu (Yamagata University, Japan), Masayuki Kaneda (Osaka Prefecture University, Japan)

IHTC15-8548/FCV-F-313

Heat and Mass Transfer in a Single-Channel Plate Membrane Contactor with a Combined Counter/Cross-Flow Arrangement

Simin Huang, Minlin Yang, Frank G.F. Qin, Yongjun Xu, Yuanzhi Zuo, Xiaoxi Yang (Dongguan University of Technology, China)

IHTC15-8711/FCV-F-314

Development of an Empirical Model for Convective Evaporation of Sessile Droplets of Volatile Fluids

Florian Carle, David Brutin (Aix-Marseille University, France)

IHTC15-8736/FCV-F-315

Behavior and Optimization of Spray Humidification inside Air-Cooled Condenser of Power Generating Unit

Liehui Xiao, Xinming Xi, Xiaoze Du, Lijun Yang (North China Electric Power University, China)

Session 32 (F) [10:30 - 12:30]

Co-Chairs : Keishi Kariya & Reinhold Kneer

IHTC15-8418/FCV-F-321

A Uniform Temperature Heat Sink for Cooling of High Concentrator Photo-Voltaic Systems Gad Hetsroni (Israel Institute of Technology, Israel), Avram Bar-Cohen (University of Maryland, USA)

IHTC15-8684/FCV-F-322

Numerical Study of Conjugate Heat Transfer of Supercritical Kerosene Flow in Rectangular Cooling Channel

Fengquan Zhong, Guoxin Dang, Yunfei Xing, Lihong Chen, Xinyu Chang (Chinese Academy of Sciences, China)

IHTC15-9266/FCV-F-323

Determination of Convective Heat Transfer for Subsonic Flows over Heated Asymmetric Airfoil NACA 4412 Yusuf Dag, Stephen Akwaboa, Patrick Mensah (Southern University and A&M College, USA)

IHTC15-8461/FCV-F-324

Convective Heat Transfer Characteristics of Low Concentrations CuO-Water Nanofluid in the Turbulent Flow Regime Based on Artificial Intelligent Models Mehdi Mehrabi, Mohsen Sharifpur, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-9814/FCV-F-325

Heat Transfer Processes in Film Casting of Compressible Polymers Juan Ramos (Universidad de Malaga, Spain)

IHTC15-9154/FCV-F-326

Convection-Radiation Interaction in Eccentric Annulus Using the Coupled Lattice Boltzmann and Meshless Method

Kang Luo, Zhi-hong Cao, Hong-Liang Yi, He-Ping Tan (Harbin Institute of Technology, China)

13th, Wednesday

Room G

Session 31 (G) [8:20 - 10:00]

MFP

Materials and Foods Processing

Co-Chairs : Yanguang Shan & Takao Yoshinaga

IHTC15-8844/MFP-G-311

The Contact Heat Transfer in Rotary Drums in Dependence on the Particle Size Ratio Aainaa Izyan Nafsun, Fabian Herz, Eckehard Specht (Otto von Guericke University Magdeburg, Germany), Viktor Scherer, Siegmar Wirtz, Hendrik Komossa (Ruhr University Bochum, Germany)

IHTC15-9321/MFP-G-312

Fundamental Study on Agglomeration Control of Metallic Nano-Particles by Thermal Treatment

Takushi Saito, Tatsuya Kawaguchi, Isao Satoh (Tokyo Institute of Technology, Japan)

IHTC15-8383/MFP-G-313

Three-Dimensional Simulation of Phosphor Dispensing Process in Light Emitting Diode Packaging by Lattice Boltzmann Method

Lan Li, Huai Zheng, Chao Yuan, Xingjian Yu, Xiaobing Luo (Huazhong University of Science and Technology, China)

IHTC15-8715/MFP-G-314

Numerical Investigation of Cooling in the Continuous Fiber Glass Drawing Process Quentin Chouffart (University of Liège, Belgium), Philippe Simon (3B - The Fibreglass Company, Belgium), Vincent E. Terrapon (University of Liège, Belgium)

IHTC15-8601/MFP-G-315

Optimization of the Chemical Vapor Deposition Process for Gallium Nitride Pradeep George (New York University, UAE), Jiandong Meng, Yogesh Jaluria (Rutgers University, USA)

Session 32 (G) [10:30 - 11:50]

Co-Chairs : Eiji Hihara & Jinjia Wei

IHTC15-8563/ACR-G-321

Study on Heat Transfer Characteristics of Active Magnetic Regenerator in Magnetic Refrigeration System Min Soo Kim, Keon Kuk, Ilju Mun (Samsung Electronics Co., Ltd., Korea)

IHTC15-8940/ACR-G-322

Experimental Study of Ground Source Heat Pumps That Use the Direct Expansion Method Tetsuaki Takeda, Daiki Yokoyama, Akio Ohashi, Syuhei Ishiguro, Shumpei Funatani, Koichi Ichimiya (University of Yamanashi, Japan)

IHTC15-9310/ACR-G-323

Prediction Modeling of Automobile Dynamic Thermal Load Jianghong Wu (South China University of Technology, China), Hang Song (University of Southern California, USA), Chaopeng Liu (South China University of Technology, China)

IHTC15-9534/ACR-G-324

Development of All Aluminum Microchannel Heat Exchanger for Air-Conditioner Hirokazu Fujino, Toshimitsu Kamada, Satoshi Inoue (Daikin Industries,LTD., Japan)

13th, Wednesday

Room H

Session 31 (H) [8:20 - 10:20]

NSM1 | Numerical Simulation (1)

Co-Chairs : Liang Gong & Mamoru Tanahashi

IHTC15-9037/NSM-H-311

Heat and Mass Transfer Modelling of an Industrial Autoclave to Minimise Steam Consumption

Wei L. Lau, John A. Reizes, Victoria Timchenko, Sami Kara, Bernard J. Kornfeld (University of New South Wales, Australia)

IHTC15-8447/NSM-H-312

Heat Transfer Enhancement in a Tube Filled with a Porous Medium: Influence of the Thermal Conductivity of the Porous Medium

Tingzhen Ming, Yong X. Tao (University of North Texas, USA)

IHTC15-9182/NSM-H-313

Molecular Simulation of the Dynamic Process of Water Vapour Absorption into Aqueous LiBr Solution with or without Alcohol Surfactants

Hongtao Gao (University of Nottingham, UK, Dalian Maritime University, China), Beibei Zhu, Yuying Yan (Dalian Maritime University, China)

IHTC15-9196/NSM-H-314

Comparative Study on Simulation of Convective Al₂O₃-Water and ZrO₂-Water Nanofluid by Using ANSYS-FLUENT

Mostafa Mahdavi, Mohsen Sharifpur, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8760/NSM-H-315

Effect of Material Thermal-Physical Parameters on Weld Pool and Residual Stress Peak Value

LiGe Tong , Lei Li (University of Science & Technology Beijing, China), Fang Bai (China Petroleum Pipeline College, China), Shaowu Yin, Li Wang (University of Science & Technology Beijing, China)

IHTC15-9069/NSM-H-316

Comparison of Preconditioned Density-Based Algorithm with Pressure-Velocity Correction Algorithm for Incompressible Convection

Chun Shen (Harbin Institute of Technology, China), Fengxian Sun (Harbin Engineering University, China), Xinlin Xia (Harbin Institute of Technology, China)

Session 32 (H) [10:30 - 12:30]

Co-Chairs : Takeo Kajishima & Yong X. Tao

IHTC15-9811/NSM-H-321

Towards High-Performance Thermal Flow Solvers Based on the Link-Wise Artificial Compressibility Method

Christian Obrecht, Frédéric Kuznik, Gilles Rusaouën, Jean-Jacques Roux (CETHIL UMR 5008, France)

IHTC15-8812/NSM-H-322

Asymmetric Transition for High Froude Number Plane Fountains in Linearly Stratified Fluids Mohammad Ilias Inam (James Cook University, Australia), Wenxian Lin (James Cook University, Australia , Yunnan Normal University, China), Steven W. Armfield (The University of Sydney, Australia), Yinghe He (James Cook University, Australia)

IHTC15-9729/NSM-H-323

Unified Integral Transforms in Single Domain Formulation for Internal Flow Three-Dimensional Conjugated Problems

Diego C. Knupp (State University of Rio de Janeiro, Brazil), Carolina Palma Naveira-Cotta, Renato M. Cotta (Federal University of Rio de Janeiro, Brazil)

IHTC15-9521/NSM-H-324

Assessment of Three Coalescence and Breakage Kernel Models on Predicting Complex Bubbly Flow Xinyue Duan, Liang Gong (China University of petroleum, China)

Kinyue Duan, Liang Gong (China University of petroleum, Ci

IHTC15-8783/NSM-H-325

Numerical Investigation on Conjugated Heat Transfer of Conduction in Wall and Mixed Convection in Horizontal Square Tube with Molten Salts

Chao Wang, Yu-Ting Wu, Cong Chen, Bin Liu, Chong-Fang Ma (Beijing University of Technology, China)

IHTC15-9371/NSM-H-326

Comparison of Turbulence Models in Simulating a Cruciform Impinging Jet on a Flat Wall Florin Bode (Technical University of Cluj-Napoca, Romania, Technical University of Civil Engineering in Bucharest, Romania), Kodjovi Sodjavi, Amina Meslem (University of La Rochelle, France), Ilinca Nastase (Technical University of Civil Engineering Bucharest, Romania)

13th, Wednesday

Room I

Session 31 (I) [8:20 - 10:20]

PMD1 | Porous Media (1)

Co-Chairs : Michel Quintard & Suguru Uemura

IHTC15-8405/PMD-I-311

Thermal Conductivity of Ceramic Sponges at Temperatures up to 1000 °C Benjamin Dietrich, Thomas Fischedick, Martin Wallenstein, Matthias Kind (Institute of

Thermal Process Engineering, Germany)

IHTC15-8278/PMD-I-312

One Dimensional Thermal Analysis of Solar Air Receiver Using Silicon Carbide Ceramic Foam

Fengwu Bai (Chinese Academy of Sciences, China)

IHTC15-8530/PMD-I-313

Temperature Evolution of Evacuated Tube Adsorption Bed Heated by Solar Radiation Chun-Xu Du, Zhong-Xian Yuan, Xiao-Huang Hou, Feng Xin, Dong-Dong Gao, Yong-Chang Chen (Beijing University of Technology, China)

IHTC15-8893/PMD-I-314

Heat and Mass Transfer Model of a Packed-Bed Reactor for Solar Thermochemical CO₂ Capture

Leanne Reich (The University of Minnesota, USA), Roman Bader (The Australian National University, Australia), Terrence Simon (The University of Minnesota, USA), Wojciech Lipinski (The Australian National University, Australia)

IHTC15-8657/PMD-I-315

Evaluation of Gas Production Behavior from Hydrate-Bearing Sediments with Different Thermal Properties by Depressurization

Yongchen Song, Zihao Zhu, Jiafei Zhao, Chuanxiao Cheng, Di Liu, Lei Yang, Jiaqi Wang (Dalian university of Technology, China)

IHTC15-9191/PMD-I-316

Identification of the Radiative Properties of α -SiC Foams Realistically Designed with a Numerical Generator

Simon Guevelou, Benoit Rousseau, Gilberto Domingues (L'Université Nantes Angers Le Mans, France), Jerome Vicente (Institut Universitaire des Systèmes Thermiques Industriels, France), Cyril Caliot, Gilles Flamant (Laboratoire des Procédés, Matériaux et Energie Solaire, France)

Session 32 (I) [10:30 - 12:30]

Co-Chairs : Takemi Chikahisa & Benjamin Dietrich

IHTC15-8575/PMD-I-321

A Rigorous Derivation and its Applications of Volume Averaged Transport Equations for Heat Transfer in Nanofluid Saturated Metal Foams

Fumika Sakai (Nihon Sekkei Kogyo Co., Ltd., Japan), Wenhao Li (Shizuoka University, Japan), Akira Nakayama (Shizuoka University, Japan, Wuhan Polytechnic University, China)

IHTC15-8782/PMD-I-322

Effective Thermal Conductivity of Metal Foams: Experiments and Analysis

Peng Yue (Chinese Academy of Sciences, China, University of Chinese Academy of Sciences, China), Lin Qiu, Xinghua Zheng, Dawei Tang (Chinese Academy of Sciences, China)

IHTC15-8831/PMD-I-323

Evaluation of the Thermal Hydraulic Performance of Round Tube Metal Foam Heat Exchangers for HVAC Applications

Henk Huisseune, Sven De Schampheleire, Bernd Ameel, Michel De Paepe (Ghent University, Belgium)

IHTC15-8865/PMD-I-324

Comparison of Aluminium Foam Finned Heat Sinks and Effect of Painting and Orientation in Buoyancy-Driven Convection

Sven De Schampheleire, Kathleen De Kerpel, Gerben Kennof, Pieter Pirmez, Henk Huisseune, Michel De Paepe (Ghent University, Belgium)

IHTC15-9734/PMD-I-325

Influence of Strut Shape and Porosities on Geometrical Properties and Effective Thermal Conductivity of Kelvin Like Anisotropic Metal Foams Prashant Kumar, Frederic Topin (Aix-Marseille University, France)

IHTC15-9841/PMD-I-326

An Improved Capillary Bundle Model by Using Tortuosity and Parameters Extracted from Pore Network Model

Xinhuan Zhou, Lanlan Jiang, Lingyu Chen, Yu Liu, Yongchen Song, Meiheriayi Mutailipu (Dalian University of Technology, China)

13th, Wednesday

Room J

Session 31 (J) [8:20 - 10:20]

RAD1 | Radiation (1)

Co-Chairs : Vaillon Rodolphe & Jun Yamada

IHTC15-8207/RAD-J-311

Effect of Processing Temperature on Radiative Properties of Polypropylene and Heat Transfer in the Pure and Glassfibre Reinforced Polymer

Donia Hakoume (The University of Nantes, France), Leonid Dombrovsky (Joint Institute for High Temperatures, Russia), Didier Delaunay, Benoit Rousseau (The University of Nantes, France)

IHTC15-8214/RAD-J-312

Radiative Heat Transfer Modeling in Supersonic Gas Flow with Suspended Particles to a Blunt Body

Leonid Dombrovsky (Joint Institute for High Temperatures, Russia), Dmitry Reviznikov (Moscow Aviation Institute, Russia)

IHTC15-9012/RAD-J-313

Prediction of the Resonance Condition of Metamaterial Emitters and Absorbers Using LC Circuit Model

Atsushi Sakurai (Niigata University, Japan, Georgia Institute of Technology, USA), Bo Zhao, Zhuomin Zhang (Georgia Institute of Technology, USA)

IHTC15-9222/RAD-J-314

The Micro-Macro Model for Transient Radiative Transfer Simulations

Maxime Roger (Université de Lyon, France), Nicolas Crouseilles (INRIA-Rennes Bretagne-Atlantique, France, Université de Rennes, France), Pedro J. Coelho (University of Lisbon, Portugal)

IHTC15-9382/RAD-J-315

Numerical Study of the Effects of Surface Micro-Roughness on the Optical Constants of Aluminum Determined by Spectroscopic Ellipsometry

Wenjie Zhang, Jiayue Yang, Linhua Liu (Harbin Institute of Technology, China)

IHTC15-8268/RAD-J-316

Absorption of Short-Pulsed Laser Radiation in Superficial Human Tissues: Transient vs Quasi-Steady Radiative Transfer

Jaona Randrianalisoa (Université de Reims Champagne Ardenne, France), Leonid Dombrovsky (Joint Institute for High Temperatures, Russia), Wojciech Lipinski (The Australian National University, Australia), Victoria Timchenko (The University of New South Wales, Australia) Session 32 (J) [10:30 - 12:30]

Co-Chairs : Pedro Coelho & Katsunori Hanamura

IHTC15-8771/RAD-J-321

Radiation Enhancement by Metal Film on Micro Cavities in Resin

Tsuyoshi Totani (Hokkaido University, Japan, JST PRESTO, Japan), Toshio Irokawa (Hokkaido University, Japan), Minoru Iwata (Kyushu Institute of Technology, Japan), Masashi Wakita, Harunori Nagata (Hokkaido University, Japan)

IHTC15-8871/RAD-J-322

Study of Amorphous Silicon Gratings with Disorder for Solar Energy Absorbers Xing Fang, Changying Zhao, Hua Bao (Shanghai Jiao Tong University, China)

IHTC15-9636/RAD-J-323

Thermal Radiation Characteristics in Sub-Micron Region for MEMS Space Radiator Ai Ueno, Yuji Suzuki (The University of Tokyo, Japan)

IHTC15-9384/RAD-J-324

First-Principles Study on Electronic Band Structure and Optical Constants of Synthesized Si₃Al(As_xP_{1-x}) Alloys Jiayue Yang, Linhua Liu, Jianyu Tan (Harbin Institute of Technology, China)

IHTC15-9188/RAD-J-325

Reducing Thermal Radiation Between Parallel Plates in the Far-to-Near Field Transition Regime

Yoichiro Tsurimaki (Université de Lyon , France), Pierre-Olivier Chapuis, Rodolphe Vaillon (Université de Lyon , France), Junnosuke Okajima, Atsuki Komiya, Shigenao Maruyama (Tohoku University, Japan)

IHTC15-8521/RAD-J-326

A Direct Numerical Simulation for Influence of Roughness on Near-Field Radiative Heat Transfer between Two Films

Yong Chen (Nanjing University of Science and Technology, China), Yimin Xuan (Nanjing University of Aeronautics and Astronautics, China)

13th, Wednesday

Room K

Session 31 (K) [8:20 - 10:20]

Co-Chairs : Yoshinori Itaya & Yuying Yan

IHTC15-9138/PLS-K-311

3D Numerical Simulation of Buoyancy Driven Flow in a Cubical Enclosure with Different Wall Conductivities

Narendra Gajbhiye, Praveen Throvagunta, Vinayak Eswaran (Indian Institute of Technology, India)

IHTC15-9408/PLS-K-312

Integrated Modeling of Transport Phenomena in Keyhole Welding with Plasma Arc Yan Li, Yanhui Feng, Yafei Li, Xinxin Zhang(University of Science and Technology Beijing, China), Chuansong Wu (Shandong University, China)

IHTC15-8815/PLS-K-313

Thermoelectric Properties of ZnNiO/Polyparaphenylene Hybrids Prepared by Spark Plasma Sintering

Zihua Wu, Huaqing Xie, Lianghua Gan, Jun Liu (Shanghai Second Polytechnic University, P.R.China)

IHTC15-9541/PLS-K-314

Application of an Integrated CFD Model to Aluminum Nanoparticle Production

Silvania Lopes (The von Karman Institute for Fluid Dynamics, Belgium), Pierre Proulx (University of Sherbrooke, Canada), Jean-Baptiste Gouriet, Patrick Rambaud (The von Karman Institute for Fluid Dynamics, Belgium)

IHTC15-9897/PLS-K-315

A Comparison of Methane Hydrate Decomposition Using Radio Frequency Plasma and Microwave Plasma Methods

Ismail Rahim (Ehime University, Japan, Makassar State University, Indonesia), Shinfuku Nomura, Shinobu Mukasa, Hiromichi Toyota (Ehime University, Japan)

IHTC15-9415/PLS-K-316

Two Successive Thermal Inverse Problems Solved for Plasma Facing Components inside JET Tokamak: Estimation of Surface Heat Flux and Thermal Resistance of a Surface Carbon Layer

Jonathan Gaspar (CEA, France), Fabrice Rigollet, Jean-Laurent Gardarein, Christophe Le Niliot (Aix-Marseille University, France), Yann Corre (CEA, France)

Session 32 (K) [10:30 - 12:30]

L Thermoelectric Devices

Co-Chairs : Shenghui Lei & Kazuaki Yazawa

IHTC15-9360/TEL-K-321

Thermoelectric Properties of Polymer-Semiconductor-Polymer Molecular Junction Yuanyuan Wang, Huaqing Xie (Shanghai Second Polytechnic University, China)

IHTC15-8966/TEL-K-322

Evaporation of a Water Droplet Deposited on a Nano-Patterned Transparent Film Fabricated by UV Nanoimprint

Noriyuki Unno, Motoharu Asano, Shin-ichi Satake, Jun Taniguchi (Tokyo University of Science, Japan)

IHTC15-9096/TEL-K-323

Thermal Transport Properties of PEDOT-PSS Thin Films

Harutoshi Hagino (Kyushu Institute of Technology, Japan), Masahiro Hokazono, Hiroaki Anno, Naoki Toshima (Tokyo University of Science, Yamaguchi, Japan), Koji Miyazaki (Kyushu Institute of Technology, Japan)

IHTC15-9996/TEL-K-324

Experimental Investigations on the Performance of a Thermoelectric Device with an Integrated Heat Exchanger and Flow Channels

Matthew Barry, Kenechi Agbim, B. V. Krishna Reddy, Minking K. Chyu (University of Pittsburgh, USA)

IHTC15-8789/TEL-K-325

Design Optimization of Automobile Exhaust Thermoelectric Generator for Waste Heat Recovery

Zhiqiang Niu, Qianshan Li, Wangbo He, Yongzhan Huo, Kui Jiao (Tianjin University, China)

IHTC15-8931/TEL-K-326

The Optimization of Thermoelectric Module Size in a Waste Heat Power Generation System Wei He, Shixue Wang, Chi Lu, Yanzhe Li, Xing Zhang (Tianjin University, China)

14th, Thursday

Room B1

Session 41 (B1) [8:20 - 10:00]

PBL2 Pool Boiling (2)

Co-Chairs : Yasushi Saito & Peter Stephan

IHTC15-9265/PBL-B1-411

Highly Subcooled Water Boiling: Some New Details of the Process Konstantin Khodakov, Yury Zeigarnik (Joint Institute for High Temperatures, Russia)

IHTC15-9568/PBL-B1-412

Study on Nucleate Boiling Heat Transfer by Measuring Instantaneous Surface Temperature Distribution by Infrared Radiation Camera Yasuo Koizumi, Kazuki Takahashi (Shinshu University, Japan)

IHTC15-9914/PBL-B1-413

Pore-Scale Experimental Study of Boiling in Porous Media Paul Sapin, Paul Duru (Université de Toulouse, France), Florian Fichot (Institut de Radioprotection et de Sûreté Nucléaire, France), Marc Prat, Michel Quintard (Université de Toulouse, France, CNRS, France)

IHTC15-9772/PBL-B1-414

Boiling Behaviors on a Vertical Surface in Saturated Pool Boiling at High Pressures Hiroto Sakashita (Hokkaido University, Japan)

IHTC15-9048/PBL-B1-415

Local Heat Removal by Liquid Film on the Expansion of Dry Area on a Superheated Copper Wall

Yoshihiko Haramura (Kanagawa University, Japan)

Session 42 (B1) [10:30 - 12:10]

Co-Chairs : Liwu Fan & Hiroto Sakashita

IHTC15-8680/PBL-B1-421

Characteristic Behaviors of Boiling Bubble Initiation Under High Pressure Conditions Seiichi Yokobori, Keisuke Yasumi (Tokyo City University, Japan), Sayaka Akiyama (Toshiba Corporation, Japan)

IHTC15-8795/PBL-B1-422

The Influence of Single Bubble Growth and Bubble Coalescence on Boiling Heat Transfer Axel Sielaff, Peter Stephan (Technische Universität Darmstadt, Germany)

IHTC15-9102/PBL-B1-423

Nucleation Incipience on a Heated Surface: Effect of Pressure Oscillations

Laetitia Leal (École Polytechnique de Montreal, Canada), Pascal Lavieille, Marc Miscevic (Université de Toulouse, France, CNRS, France), Fredéric Topin, Lounès Tadrist (Aix-Marseille Université, France)

IHTC15-9404/PBL-B1-424

Experimental Study of Transport Phenomena at the Onset of Nucleate Boiling Using a Boilingmeter

Mohammed Zamoum (Université M'hamed Bougara, Algérie, Aix-Marseille Université, France), Benoît Dubrac, Flora Goepper (Lorraine University, France), Lounès Tadrist (Aix-Marseille Université, France), Hervé Combeau (Lorraine University, France), Mohand Kessal (Université M'hamed Bougara, Algérie)

IHTC15-9320/PBL-B1-425

Effects of Pool Subcooling on Coalescence Heat Transfer and Bubble Dynamics Jingliang Bi, David M. Christopher (Tsinghua University, China), Xipeng Lin (Chinese Academy of Sciences, China), Xuefang Li (Tsinghua University, China)

14th, Thursday

Room B2

Session 41 (B2) [8:20 - 9:40]

Two-phase, Numerical Simulation (1)

Co-Chairs : Jun Cai & Seiichi Yokobori

IHTC15-8721/TPN-B2-411

TPN1

Population Balance Modeling for Air-Water Bubbly Flow in a Vertical U-Bend

Hongye Zhu, Xingtuan Yang, Yichuan Huang (Tsinghua University, China), Jiyuan Tu (Tsinghua University, China, RMIT University, Australia), Shengyao Jiang (Tsinghua University, China)

IHTC15-9780/TPN-B2-412

Computational Studies of LNG Evaporation and Heat Diffusion through a LNG Cargo Tank Membrane

Jang Hyun Lee (INHA University, Korea), Yoon Jo Kim (Washington State University Vancouver, USA), Seyun Hwang (INHA University, Korea)

IHTC15-8564/TPN-B2-413

Computational Fluid Dynamics Evaluation of the Multi-Nozzle Oil-Jet Lubrication for Rolling Bearings

Wei Wu, Jibin Hu, Shihua Yuan, Xueyuan Li (Beijing Institute of Technology, China)

IHTC15-9543/TPN-B2-414

Numerical Simulation of Liquid-Gas Two-Phase Flow with Large Density Difference in Multi-Layered Sintered Wick by the Lattice Boltzmann Method

Tomohiko Yamaguchi (Nagasaki University, Japan), Qian Wan, Yuying Yan, Jiaju Hong (University of Nottingham, UK)

Session 42 (B2) [10:30 - 12:10]

Two-phase, Numerical Simulation (2)

Co-Chairs : Hirofumi Arima & Yoon Jo Kim

IHTC15-9798/TPN-B2-421

Numerical Simulation of Condensing and Evaporating Annular Flows in Microchannels with Laminar and Turbulent Liquid Films Nicolas Antonsen, John R. Thome (Ecole Polytechique Fédérale de Lausanne, Switzerland)

IHTC15-8670/TPN-B2-422

Numerical Study of Water Droplet Parameters in Icing Tunnel Test Wei Dong, Jianiun Zhu, Mei Zheng, Rui Wang (Shanghai Jiao Tong University, China)

IHTC15-9133/TPN-B2-423

Numerical Simulation of Reactive Multiphase Flows in Porous Media Using Lattice Boltzmann Method

Fang Xin, Xunfeng Li, Min Xu, Xiulan Huai (Chinese Academy of Sciences, China), Zhendong Cui (Chinese Academy of Sciences, China, University of Chinese Academy of Sciences, China)

IHTC15-9595/TPN-B2-424

Modelling of Fundamental Transfer Processes in Crude-Oil Fouling Junfeng Yang, Omar Matar, Geoffery Hewitt, Wentian Zheng, Parth Manchanda (Imperial College London, United Kingdom)

IHTC15-8692/TPN-B2-425

Numerical and Experimental Study of Slug Flow Dynamics in Inclined Pipes with Granular Laver

Dmitry Khramtsov, Dmitry Nekrasov, Boris Pokusaev (Moscow State University of Mechanical Engineering, Russia)

14th, Thursday

Room C1

Session 41 (C1) [8:20 - 10:20]

TDY1 | Thermodynamics (1)

Co-Chairs : Yoshimichi Hagiwara & Heinz Herwig

IHTC15-9370/TDY-C1-411

A Simulation Study into the Thermodynamic Properties of Water-Alcohol Mixtures James Cannon (The University of Tokyo, Japan), Tohru Kawaguchi, Eiichi Okuno (DENSO CORPORATION), Junichiro Shiomi (The University of Tokyo, Japan)

IHTC15-8636/TDY-C1-412

Prediction of Anisotropic Crystal-Melt Interfacial Free Energy of Sugar Alcohols through Molecular Simulations

Huaichen Zhang, Silvia Nedea, Camilo C. M. Rindt, Herbert A. Zondag, David M. J. Smeulders (Eindhoven University of Technology, The Netherlands)

IHTC15-8833/TDY-C1-413

Influence of Form and Thermal Properties of Granular Layer to Subcooled Liquid Boiling Dynamics in Impulse Heat Generation in the Wall

Nikolay Zakharov, Sergey Karlov, Boris Pokusaev (Moscow State University of Mechanical Engineering, Russian Federation)

IHTC15-8230/TDY-C1-414

High Resolution Heat Transfer Measurements at the Three Phase Contact Line of a Moving Single Meniscus

Sebastian Fischer, Stefan Batzdorf, Tatiana Gambaryan-Roisman, Peter Stephan (Technische Universität Darmstadt, Germany)

IHTC15-8349/TDY-C1-415

Numerical Determination of Autothermal Operation Limits for Beechwood Torrefaction Processes as a Function of Different Operating Parameters Andreas Ohliger, Reinhold Kneer (RWTH Aachen University, Germany)

IHTC15-8515/TDY-C1-416

Notes on Singular Heat Radiation Reuven Segev (Ben-Gurion University of the Negev, Israel), Joe Goddard (University of California, USA) Session 42 (C1) [10:30 - 12:30]

TDY2 Thermodynamics (2)

Co-Chairs : Tatiana Gambaryan-Roisman & Tomohiko Yamaguchi

IHTC15-8482/TDY-C1-421

Loss Coefficients for Compressible Flows in Conduit Components under Different Thermal Boundary Conditions Bastian Schmandt, Heinz Herwig (Hamburg University of Technology, Germany)

IHTC15-8583/TDY-C1-422

Energy Separation of Gases with Prandtl Numbers Unequal to Unity Alexander I. Leont'ev, Igor I. Vigdorovich (Lomonosov Moscow State University, Russia)

IHTC15-9158/TDY-C1-423

Chimney-Enhanced Natural Convection in Honeycombs Xiao Hu Yang, Jia Xi Bai, Hong Bin Yan, Tian Jian Lu (Xi'an Jiaotong University, China), Tongbeum Kim (University of the Witwatersrand, South Africa)

IHTC15-9184/TDY-C1-424

Calculating and Assessing Complex Convective Heat Transfer Problems: The CFD-SLA Approach

Christoph Redecker, Heinz Herwig (Hamburg University of Technology, Germany)

IHTC15-9847/TDY-C1-425

Effect of the Fin Height on Unsteady Flows and Heat Transfer in a Differentially Heated Cavity Jia Ma, Feng Xu (Beijing Jiaotong University, China)

IHTC15-9966/TDY-C1-426

Numerical Study on Cooling Performance for Multi-Holes Steam Jet in the Internal Channel of a Hollow Turbine Blade

Liang Xu, Shuai Zhang, Wei Wang, Jianmin Gao, Tieyu Gao (Xi'an Jaotong University, China)

14th, Thursday

Room C2

Session 41 (C2) [8:20 - 10:20]

Heat Transfer Enhancement (5)

Co-Chairs : Yanhua Diao & Kazuyoshi Nakabe

IHTC15-9080/HTE-C2-411

Heat Transfer Performance of a Channel Flow with Aluminum Fiber Layers (Comparison with Aluminum Porous Foams)

Keita Imai, Mami Yamamoto (Doshisha University, Japan), Masaaki Sakagami (Taisei Kogyo Co. Itd., Japan), Mamoru Senda, Kyoji Inaoka (Doshisha University, Japan)

IHTC15-10554/HTE-C2-412

Heat Transfer near Injection Hole by Shock and Boundary Layer Interaction in the Supersonic Flowfield

Namkyu Lee, Jiwoon Song, Ji-Yeul Bae (Yonsei University, Korea), Yoon Goo Kang, Heecheol Ham, Ju Chan Bae (Agency for Defense Development, Korea), Hyung-Hee Cho (Yonsei University, Korea)

IHTC15-8562/HTE-C2-413

Non-Similar Heat Transfer Characteristics Associated with Nanofluid Forced Convection Cooling and Heating

Wenhao Li (Shizuoka University, Japan), Akira Nakayama (Shizuoka University, Japan, Wuhan Polytechnic University, China)

IHTC15-8571/HTE-C2-414

Heat Transfer Optimization for Reducing Thermal and Flow Resistance

Wei Liu, Hui Jia, Zhichun Liu, Jinguo Yang (Huazhong University of Science and Technology, China)

IHTC15-8689/HTE-C2-415

Thermal Fluid Flow Transport Characteristics in Pipe Flow Using Graphene-Oxide-Nanofluid Shuichi Torii, Hajime Yoshino (Kumamoto Universty, Japan)

IHTC15-8801/HTE-C2-416

Heat Transfer Enhancement in Tangential Injection Induced Swirl Flows Gopinath R. Warrier, Derrick Lloyd (University of California, USA), Lin Yang (Xi'an Jiaotong University, China), Yuanchen Hu, Vijay K. Dhir, Yongh S. Ju (University of California, USA) Session 42 (C2) [10:30 - 12:30]

Co-Chairs : Naoki Shikazono & Gopinath Warrier

IHTC15-9825/HTE-C2-421

Evaluation of Herringbone Wavy Fin Based Heat Exchanger for Heat Transfer Enhancement in Automobile Exhaust Energy Harvesting Systems

Jayati Athavale, Jaideep Pandit, Srinath Ekkad, Scott Huxtable (Virginia Tech University, USA)

IHTC15-9969/HTE-C2-422

Natural Convection in an Open-Ended Channel under Staggered Thermal Boundary Conditions. Application to the Control of the Free Cooling in Photovoltaic Doubleskin Facades

Christophe Ménézo, Stéphanie Giroux-Julien (CNRS-INSA-Univ, France), Victoria Timchenko (The University of New South Wales, Australia), Marco Fossa (University of Genova, Italy)

IHTC15-8747/HTE-C2-423

Thermal and Hydraulic Characteristics of SCO_2 in a Horizontal Tube at High Reynolds Number

Katsuyoshi Tanimizu, Reza Sadr, Devesh Ranjan (Texas A&M University, USA)

IHTC15-8554/HTE-C2-424

Dynamic and Heat Transfer of Lobed Impinging Jets Denis Brouilliot, David Lo Jacono (Université de Toulouse, France)

IHTC15-8864/HTE-C2-425

An Experimental Study of Heat Transfer in the Turn Region of a U-Bend Channel with Various Ribs

Chenglong Wang, Lei Wang, Bengt Sunden (Lund University, Sweden)

IHTC15-8904/HTE-C2-426

Enhancement of Heat Transfer Performance by Using Sawtooth Fin Structure in the Multiport Microchannel Flat Tube

Ji Zhang, Yanhua Diao, Yaohua Zhao, Yanni Zhang (Beijing University of Technology, China)
14th, Thursday

Room E

Session 41 (E) [8:20 - 10:00]

CPM1

Computational Methods (1)

Co-Chairs : Fang Liu & Takahiro Tsukahara

IHTC15-9034/CPM-E-411

A Two-Dimensional Numerical Method for Incompressible Flow Problem Based on SIMPLER Algorithm and Quadtree Grid with Collocated Arrangement Wei You, Zengyao Li, Wenquan Tao (Xi'an Jiaotong University, China)

IHTC15-9302/CPM-E-412

Different Approaches to FVM Method Fluid Flow and Heat Transfer Simulation Inside Thermosvphon

Marcin Lecki, Grzegorz Gorecki (Lodz University of Technology, Poland)

IHTC15-9342/CPM-E-413

An HP-Adaptive Predictor-Corrector Split Projection Method for Turbulent Compressible Flow Xiuling Wang (Purdue University, USA), David B. Carrington (Los Alamos National Laboratory, USA), Darrell W. Pepper (University of Nevada Las Vegas, USA)

IHTC15-9525/CPM-E-414

Thermal Hydraulic Modeling of Shell and Tube Heat Exchangers Jose Teixeira (Universidade do Minho, Portugal), Antonio Oliveira (University of Sheffield, UK), Senhorinha Teixeira (Universidade do Minho, Portugal)

IHTC15-9337/CPM-E-415

Dispersion of High Pressure Underexpanded Helium Jets into the Atmosphere Xuefang Li, David Christopher (Tsinghua University, China)

Session 42 (E) [10:30 - 12:30]

Co-Chairs : Shin-ichi Satake & Senhorinha Teixeira

IHTC15-9797/CPM-E-421

Lattice Boltzmann Simulations for Anisotropic Crystal Growth of a Binary Mixture Amina Younsi, Alain Cartalade (CEA-Saclay, France), Michel Quintard (Université de Toulouse, France)

IHTC15-8580/CPM-E-422

Numerical Investigation of Heat Transfer in a Forced Flow of He II Cyprien Soulaine. Michel Quintard (Universite de Toulouse, France), Hervé Allain (CERN, Switzerland), Bertrand Baudouy (CEA-Saclay, France), Rob van Weelderen (CERN, Switzerland)

IHTC15-10035/CPM-E-423

Hilbert Spectral Analysis of Oscillating Forced Convection in Curved Ducts Fang Liu (Advanced Energy Efficiency LLC, USA)

(Korea Atomic Energy Research Institute, Republic of Korea)

IHTC15-8982/CPM-E-424

1D and 3D Numerical Simulation of the Reactor Cavity Cooling System of a Very High Temperture Reactor C. G. du Toit, Pieter Rousseau (North-West University, South Africa), Jisu Jun, Jae-Man Noh

IHTC15-9662/CPM-E-425

Regimes of Heating and Compression in Magneto-Inertial Fusion Victor V. Kuzenov, Sergei V. Ryzhkov (Bauman Moscow State Technical University, Russia)

IHTC15-9724/CPM-E-426

Oscillatory Instability of Natural Convection of Air in a Laterally Heated Cubic Box Alexander Gelfgat (Tel-Aviv University, Israel)

14th, Thursday

Room F

Session 41 (F) [8:20 - 10:20]

NCV1 | Natural Convection (1)

Co-Chairs : David Naylor & Toshio Tagawa

IHTC15-8947/NCV-F-411

Transition in a Natural Convection Boundary Layer Yongling Zhao, Chengwang Lei, John Patterson (The University of Sydney, Australia)

IHTC15-9339/NCV-F-412

Study on Free Convection Heat Transfer in Finned Tube Array Ryoji Katsuki, Chikako Iwaki, Tsutomu Shioyama, Tadamichi Yanazawa (Toshiba corporation, Japan)

IHTC15-9527/NCV-F-413

Analysis of Heatfunction Boundary Conditions on Invariance of Heat Flow in Square Enclosures with Various Thermal Boundary Conditions Pratibha Biswal, Tanmay Basak (Indian Institute of Technology Madras, India)

IHTC15-9258/NCV-F-414

Natural Convection around a Pulsating Line Heat Source Mojtaba Jarrahi (LIMSI-CNRS, France, University of Paris-Sud, France), Marie-Christine Duluc (LIMSI-CNRS, France, CNAM, France), Yann Fraigneau, Gérard Defresne (LIMSI-CNRS, France, University of Paris-Sud, France)

IHTC15-8776/NCV-F-415

Confinement-Induced Enhancements of Heat-Transfer Efficiency and Thermal Plume Coherency in Turbulent Thermal Convection

Ke-Qing Xia, Matthias Kaczorowski, Shi-Di Huang, Kai-Leong Chong (The Chinese University of Hong Kong, China)

IHTC15-10004/NCV-F-416

Interaction of Rayleigh - Benard Convection and Oscillatory Flows Murat K. Aktas, Semih Cetindag (TOBB University of Economics and Technology, Turkey) Session 42 (F) [10:30 - 12:30]

Co-Chairs : Masato Akamatsu & Marie-Christine Duluc

IHTC15-8506/NCV-F-421

Experimental and Analytical Investigation on Thermal Stratification under Natural Circulation Cooling

Shigeo Kodama (Nuclear Engineering Co. Ltd), Isao Kataoka, Kenji Yoshida, Takafumi Suga, Kizuku Michii, Takashi Fujisaki (Osaka University, Japan)

IHTC15-8239/NCV-F-422

Interferometric Study of the Effect of Insect Screens on Free Convection at a Window Glazing

Daniel Zalcman, Seyed Sepehr Mohaddes Foroushani, David Naylor (Ryerson University, Canada)

IHTC15-8531/NCV-F-423

Conjugate Natural Convection in a Porous Three-Dimensional Enclosure with a Heat Source: A Comparison Study of Different Models Mikhail Sheremet (Tomsk State University, Russia, Tomsk Polytechnic University, Russia), Tatyana Trifonova (Tomsk State University, Russia)

IHTC15-8499/NCV-F-424

Natural Convective Heat Transfer from an Inclined Isothermal Square Flat Element Mounted in a Flat Adiabatic Surrounding Surface Patrick H. Oosthuizen (Queens University, ON Canada)

IHTC15-9319/NCV-F-425

Interaction Effects between Surface Radiation and Sub-atmosphere Natural Convection in Multi-Heat Sources Enclosures Han Wang, Chuang Sun, Xin-Lin Xia, He-Ping Tan (Harbin Institute of Technology, China)

IHTC15-8292/NCV-F-426

Effect of Direct Liquid Cooling on Light Emitting Diode Local Hot Spots: Natural Convection Immersion Cooling Enes Tamdogan, Mehmet Arik (Ozyegin University, Turkey)

14th, Thursday

Room G

Session 41 (G) [8:20 - 10:20]

Gas Turbine Co-Chairs : Yutaka Oda & Liang Xu

IHTC15-9600/GTB-G-411

Effect of Swirled Leakage Flow on Endwall Film-Cooling Matthew Stinson, Richard Goldstein, Terrence Simon (University of Minnesota, USA), Shu Fujimoto, Chiyuki Nakamata (IHI Corporation, Japan)

IHTC15-8914/GTB-G-412

Effects of Surface Geometry and Blowing Ratio on Film Cooling Performance at Airfoil Trailing Edge Investigated by Using Large Eddy Simulation

Akira Murata, Ena Mori, Kaoru Iwamoto (Tokyo University of Agriculture and Technology, Japan)

IHTC15-8457/GTB-G-413

Effects of Ingestion on the Flow and Heat Transfer in a Rotor-Stator System Le Wang, Mike Wilson (University of Bath, UK)

IHTC15-9249/GTB-G-414

Experimental and Numerical Study of Flow Structure and Liner Wall Temperature in Reverse Flow Combustor

Xuan Gao, Fei Duan (Nanyang Technological University, Singapore), Sengchuan Lim, Mee Sin Yip (DSO national laboratories, Singapore)

IHTC15-9553/GTB-G-415

Blade and Vane Leading Edge Fillet on Endwall Cooling in Linear Turbine Cascades Gazi Mahmood, Sumanta Acharya (Louisiana State University, USA)

IHTC15-9584/GTB-G-416

Experimental and Computational Film Cooling with Backward Injection for Cylindrical and Fan-Shaped Holes

Shiou-Jiuan Li, Andrew Chen (Texas A&M University, USA), Wei-Hsiang Wang (National Chiao Tung University, Taiwan), Je-Chin Han (Texas A&M University, USA)

Session 42 (G) [10:30 - 12:30]

Co-Chairs : Xiaobing Luo & Junichiro Shiomi

IHTC15-9485/NMM-G-421

Single-Walled Carbon Nanotubes for Heteroiunction Solar Cells Kehang Cui, Takaaki Chiba, Shohei Chiashi (The University of Tokyo, Japan), Esko Kauppinen (Aalto University, Finland), Shigeo Maruyama (The University of Tokyo, Japan)

IHTC15-8569/NMM-G-422

Thermal Performance of a Propilen Glycol/Alumina Nanofluid under Internal Developing Laminar Flow

Pablo Fariñas Alvariño, José María Sáiz Jabardo, Javier García del Valle (A Coruña University, Spain), Ana Soto (Santiago University, Chile)

IHTC15-9607/NMM-G-423

Thermal Conductivity Measurement of Bare Carbon Nanotube Films Using the Photoacoustic Technique

Thomas L. Bougher, Cristal J. Vasguez, Baratunde A. Cola (Georgia Institute of Technology, USA)

IHTC15-9063/NMM-G-424

Growth and Applications of Horizontally Aligned Single-Walled Carbon Nanotubes Shohei Chiashi, Taiki Inoue, Keigo Otsuka, Daisuke Hasegawa, Shigeo Maruyama (The University of Tokyo, Japan)

IHTC15-9642/NMM-G-425

Monitoring Heat Conduction in Nanostructures with Embedded Planar Defects Haoxue Han (Ecole Centrale Paris, France), Yuriy Kosevich (Ecole Centrale Paris, France, Moscow Academia of Sciences, Russia), Sebastian Volz (Ecole Centrale Paris, France)

IHTC15-9618/NMM-G-426

Electrokinetic Focusing of Colloidal Particles by Joule Heating Induced Temperature Gradient in a Convergent-Divergent Microfluidic Structure Zhengwei Ge, Chun Yang (Nanyang Technological University, Singapore)

14th, Thursday

Room H

Session 41 (H) [8:20 - 10:00]

Conduction (1)

CND1

Co-Chairs : Gota Kikugawa & Subhash Mishra

IHTC15-9735/CND-H-411

Understanding of Non-Fourier Conduction Based on Thermon Gas Model Xiaodong Shan, Moran Wang (Tsinghua University, China)

IHTC15-8466/CND-H-412

Accuracy of the First Eigenvalue of Heat Conduction Problems Calculated Through Tables and Explicit Approximate Expressions

Sergio Dalmas (Federal Technological University of Paraná, Brazil), Luiz Fernando Milanez (University of Campinas, Brazil)

IHTC15-9021/CND-H-413

Thermomass-Based General Law for Ballistic-Diffusive Heat Conduction in Nanostructures Bing-Yang Cao, Yu-Chao Hua (Tsinghua University, China)

IHTC15-9207/CND-H-414

Topology Optimisation for the Volume-to-Surface Problem in a Three-Dimensional Cubic Domain Using Conduction Cooling

Francois H. Burger, Jaco Dirker, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-9920/CND-H-415

An Application of the Generalized Least Squares Method to the Analysis of the Heat Transfer Process with Supplementary Data

Anna Sciazko (AGH University of Science and Technology, Poland, Shibaura Institute of Technology, Japan), Yosuke Komatsu, Shinji Kimijima (Shibaura Institute of Technology, Japan), Zygmunt Sz. Kolenda, Janusz S. Szmyd (AGH University of Science and Technology, Poland)

Session 42 (H) [10:30 - 12:10]

Co-Chairs : Luiz Fernando Milanez & Takayoshi Takano

IHTC15-8973/CND-H-421

Efficient Coupling Procedures in Steady and Unsteady Thermal Analysis Marc. P. Errera (ONERA, France)

IHTC15-9090/CND-H-422

Analysis of Heat Transfer in a 2-D Cylindrical Porous Medium Subhash C. Mishra, Snehasish Panigrahy (Indian Institute of Technology Guwahati, India)

IHTC15-9932/CND-H-423

Prediction of Effective Thermal Conductivity of Sintered Porous Media with the Discrete Element Method

Xiao-Long Ouyang, Rui-Na Xu, Le Zhang, Bo Zhou, Pei-Xue Jiang (Tsinghua University, China)

IHTC15-9501/CND-H-424

Study of Thermal Conductivity in Nanoporous Thin Film and Nanocomposites Bo Fu, Cheng Bi, Guihua Tang (Xi'an Jiaotong University, China)

IHTC15-9506/CND-H-425

Improving Solidification Structure of Paraffin-Based Nanofluid by Surfactant and Ultrasound Lisi Jia, Ying Chen, Shijun Lei, Songping Mo, Zhuowei Liu, Xuefeng Shao (Guangdong University of Technology, China)

14th, Thursday

Room I

Session 41 (I) [8:20 - 10:00]

PMD3 Porous Media (3)

Co-Chairs : Rachid Bennacer & Akira Nakayama

IHTC15-8706/PMD-I-411

Numerical Investigation of Fluid Flow and Heat Transfer in Periodic Porous Lattice-Flame Materials

Swaminathan G. Krishnan, Karthik K.Bodla, Justin A. Weibel, Suresh V. Garimella (Purdue University, USA)

IHTC15-8987/PMD-I-412

An Optimization Study of Heat Transfer Enhancement Due to Jet Impingement over Porous Heat Sinks Using Lattice Boltzmann Method

Sampath Kumar Chinige, Nikhilesh Ghanta, Arvind Pattamatta (Indian Institute of Technology Madras, India)

IHTC15-9590/PMD-I-413

Influence on Stress Jump Coefficient of Porous Structure and Flow Conditions Baoming Chen, Fang Liu, Guoqing Zhang, Zhi Liu (Shandong Jianzhu University, China)

IHTC15-9303/PMD-I-414

Analytical Prediction of the Transition Point to Weak Turbulent Convection in a Porous Layer Subject to Feedback Control Peter Vadasz (Northern Arizona University, USA)

IHTC15-9742/PMD-I-415

Experimental and Numerical Investigations of Supersonic Transpiration Cooling through Sintered Porous Flat Plates

Zheng Huang (Tsinghua University, China), Yanbin Xiong (Tsinghua University, China, Beijing Institute of Astronautical System Engineering, China), Yinhai Zhu, Peixue Jiang (Tsinghua University, China) Session 42 (I) [10:30 - 12:30]

Co-Chairs : Takuto Araki & Justin Weibel

IHTC15-8811/PMD-I-421

A Porous Media Approach for Analyzing a Spiral-Wound Reverse Osmosis Desalination Module

Yoshihiko Sano, Akihiko Horibe, Naoto Haruki (Okayama University, Japan), Akira Nakayama (Shizuoka University, Japan, Wuhan Polytechnic University, China)

IHTC15-9774/PMD-I-422

Convective to Diffusive Contribution of Mass Transfer in Porous Building Materials through Peclet Number Evaluation Kamilia Ababri (LMT- Cachan, France), Bafik Belarbi (LaSIE, La Rochelle University, France)

Kamilia Abahri (LMT- Cachan, France), Rafik Belarbi (LaSIE, La Rochelle University, France), Rachid Bennacer (LMT- Cachan, France), Bin Liu (Tianjin University of Commerce, China)

IHTC15-9248/PMD-I-423

Discussion on Conditions of Local Thermal Non-Equilibrium Effect in Porous Media Hujin Xu, Liang Gong, Shanbo Huang (China University of Petroleum, East China)

IHTC15-9347/PMD-I-424

Effect of Temperature and Porosity Change on Numerical Analysis of CO₂ Absorption Behavior in Porous Solid Sorbent by Using the Unreacted-Core Model Shuhong Xu, Takahiro Tanaka, Takao Nakagaki (Waseda University, Japan)

IHTC15-9116/PMD-I-425

Structural Optimization of Porous Flow Fields to Improve Water Management Ability of PEFC Kengo Suzuki, Daiki Sato, Yutaka Tabe, Takemi Chikahisa (Hokkaido University, Japan)

IHTC15-9438/PMD-I-426

Tortuosity in Porous Anode Electrode of Solid Oxide Fuel Cells Estimated from Saturation Currents and a Mass Transport Model in Comparison with a Real Micro-Structure Grzegorz Brus (AGH University of Science and Technology, Poland, Kyoto University, Japan), Kosuke Miyawaki, Hiroshi Iwai, Motohiro Saito, Hideo Yoshida (Kyoto University, Japan)

14th, Thursday

Room J

Session 41 (J) [8:20 - 10:00]

RAD3 Radiation (3)

Co-Chairs : Leonid Dombrovsky & Atsushi Sakurai

IHTC15-9563/RAD-J-411

Effects of Molecular Gas Radiation on Rayleigh-Bénard Convection in a 3D Cubical Cavity Laurent Soucasse, Philippe Rivière, Anouar Soufiani (Laboratoire EM2C, France, École Centrale Paris, France)

IHTC15-9357/RAD-J-412

Numerical Study on Solar Reflection Performance of Cool Painting and the Optimization Shinichi Kinoshita, Satoshi Nishimura, Atsumasa Yoshida (Osaka Prefecture University, Japan)

IHTC15-8315/RAD-J-413

Effect of Fractal Parameters on Absorption Coefficient of Soot Aggregates in the Electrostatic Limit

Prasanna Swaminathan, Philippe Rivière, Anouar Soufiani (Laboratoire EM2C, France, École Centrale Paris, France)

IHTC15-9143/RAD-J-414

Implementation of the SUN Model for Radiation Heat Transfer in Packed Pebble Bed Gas Cooled Reactors

Pieter G. Rousseau, Charl G. du Toit, Stefan van der Walt (North-West University, South Africa)

IHTC15-9478/RAD-J-415

The Influence of Carbon Fiber Composite Material Structures on the Spectral Attenuation Properties of Thermal Radiation

Ming Xie, Qing Ai, Xiaochen Xie, Liu Yang, Heping Tan (Harbin Institute of Technology, China)

Session 42 (J) [10:30 - 12:30]

Co-Chairs : Linhua Liu & Toshiro Makino

IHTC15-9822/RAD-J-421

Heat Transfer in Vacuum Thermal Insulation of Space Vehicles: An Experimental Estimate vs Theoretical Prediction

Aleksey V. Nenarokomov (Moscow Aviation Institute, Russia), Leonid A. Dombrovsky (Joint Institute for High Temperatures, Russia), Irina V. Krainova, Oleg M. Alifanov, Sergey A. Budnik (Moscow Aviation Institute, Russia)

IHTC15-8683/RAD-J-422

Effect of Structure and Transfer Function on Artificial Neural Networks Used in Radiation Thermometry for Steel Chang-Da (Alex) Wen, Po-Chin Fu (National Cheng Kung University, Taiwan)

IHTC15-9545/RAD-J-423

Enhancement of Ray Tracing Method for Radiative Heat Transfer: Application to EUI Space Instrument

Lionel Jacques (Université of Liège, Belgium, Centre Spatial de Liège, Belgium), Luc Masset, Gaetan Kerschen (Université of Liège, Belgium)

IHTC15-9531/RAD-J-424

Effect of Fractal-Like Aggregation on Radiative Properties and Specific Growth Rate of Chlorella

Zhen-zong He, Hong Qi, Qin Chen, Ya-tao Ren, Li-ming Ruan (Harbin Institute of Technology, China)

IHTC15-9126/RAD-J-425

Measurement of Radiative Properties of Scattering and Absorbing Layered Media Takahiro Kono, Jun Yamada (Shibaura Institute of Technology, Japan)

IHTC15-8901/RAD-J-426

Measurement and Prediction of Absorbed Irradiating Energy Distribution in Narrow Channel of Desiccant Rotor

Jie Li, Yoshinori Hamamoto, Hideo Mori (Kyushu University, Japan)

14th, Thursday

Room K

Session 41 (K) [8:20 - 10:00]

HPP1

Heat Pipe (1) Co-Chairs : Niro Nagai & Ji Yulong

IHTC15-8985/HPP-K-411

Flow Visualisation in a Transparent Thermosyphon: Influence of Internal Pressure Kate Smith (Trinity College, Ireland), Roger Kempers (Trinity College, Ireland, Alcatel-Lucent, Ireland), Anthony Robinson, Samuel Siedel (Trinity College, Ireland)

IHTC15-9031/HPP-K-412

Super-Thin Heat Pipe in Smartphone Application

Thanh-Long Phan, Mohammad Shahed Ahamed, Thang Nguyen, Masataka Mochizuki, Yuji Saito (Fujikura Ltd., Japan), Sadanari Mochizuki (Tokvo University of Agriculture and Technolog, Japan)

IHTC15-8842/HPP-K-413

Boiling Heat Transfer Enhancement of Double-Tube Heat Pipe for High Power Devices Taro Kato, Masafumi Katsuta, Kazuhiro Sugaya, Ryutaro Hotta (Waseda University, Japan)

IHTC15-9124/HPP-K-414

Heat Pipe Applications in Cooling Nuclear Fuel Randeep Singh, Masataka Mochizuki, Thang Nguyen, Yuji Saito (Fujikura Ltd, Japan)

IHTC15-9619/HPP-K-415

Dynamics of Evaporation in a Single, Straight-Tube Pulsating Heat Pipe Kunito Okuyama, Takahiro Ichikawa, Shoji Mori (Yokohama National University, Japan)

Session 42 (K) [10:30 - 12:30]

Co-Chairs : Marco Marengo & Hajime Onishi

IHTC15-9141/HPP-K-421

Investigation of Gravity Heat Pipe with Internal Helical Microfins in Different Sections Gongming Xin, Chong Zhang, Wenjing Du, Yan Chen, Lin Cheng (Shandong University, China)

IHTC15-9125/HPP-K-422

Effect of Inclination Angle onto Heat Transport Characteristics of Bubble-Actuated Circulating Heat Pipe (Bach) Covering High-Temperature Region Yingying Ji, Niro Nagai (University of Fukui, Japan), Kohei Takano (Mitsubishi Motors Corporation, Japan)

IHTC15-9076/HPP-K-423

Oscillation-Induced Heat Transportation in a Curved Heat Transpotation Pipe Seiichiro Yuguchi, Hideyuki Kusaka, Kosuke Shiratori, Gaku Tanaka (Chiba University, Japan)

IHTC15-9442/HPP-K-424

An Investigation of Operating Limit for Oscillating Heat Pipes Yulong Ji, Chao Chang, Gen Li (Dalian Maritime University, China), Hongbin Ma (University of Missouri, USA)

IHTC15-9476/HPP-K-425

Experimental Investigation of Ultrasonic Effect on a Nanofluid Oscillating Heat Pipe Nannan Zhao, Benwei Fu (Dalian Maritime University, China), Hongbin Ma (University of Missouri, USA)

IHTC15-9208/HPP-K-426

Effects of Tube Diameter on Internal Flow Patterns and Heat Transport Performance of Parallel-Tube Heat Transport Device

Kazusa Abiko, Akira Murata, Hiroshi Saito, Kaoru Iwamoto (Tokyo University of Agriculture and Technology, Japan)

15th, Friday

Room B1

Session 51 (B1) [8:40 - 10:40]

Pool Boiling (4)

PBL4

Co-Chairs : Yasuo Koizumi & Gherhardt Ribatski

IHTC15-9471/PBL-B1-511

Interfacial Instability on Vapor Bubble Exposed to Subcooled Pool Ichiro Ueno, Takahito Saiki, Tomohiro Osawa, Jun Ando, Toshihiro Kaneko (Tokyo University of Science, Japan), Chungpyo Hong (Kagoshima University, Japan)

IHTC15-9659/PBL-B1-512

A Comparison Study of State-of-the-Art Experimental and Numerical Simulation Results Associated with Nucleate Boiling of a Single Bubble

Satbyoul Jung (Kyung Hee University, Korea), Yasuo Ose (Yamato System Engineer Co.,Ltd., Japan), Hyungdae Kim (Kyung Hee University, Korea), Tomoaki Kunugi (Kyoto University, Japan)

IHTC15-8854/PBL-B1-513

Enhanced Boiling Heat Transfer on Super-Hydrophilic Surface with Porous Copper Layer Pengfei Xu, Qiang Li (Nanjing University of Science and Technology, China), Yimin Xuan (Nanjing University of Aeronautics and Astronautics, China, Nanjing University of Science and Technology, China)

IHTC15-9224/PBL-B1-514

Enhancement of Heat Transfer at Transition and Film Boiling of Nitrogen on Spheres with Dimples and Low Conductivity Coating

Vladmir Zhukov (Institute of High Temperature, Russia), Yury Kuzma-Kichta (MPEI,Russia), Viktor Lenkov (Institute of High Temperature, Russia), Alexander Lavrikov, Mikhail Shustov (MPEI, Russia)

IHTC15-8941/PBL-B1-515

Improvement of Nucleate Boiling Heat Transfer Characteristics by Using Immiscible Mixtures Shota Kita, Shunsuke Onishi, Yuta Fukuyama, Haruhiko Ohta (Kyushu University, Japan)

IHTC15-8619/PBL-B1-516

Pool Boiling Heat Transfer Enhancement by γ*-Al*₂O₃ /*FC-72 Nanofluids on a Smooth Surface* Xin Kong, Jinjia Wei, Jie Ding, Yonghai Zhang (Xi'an Jiaotong University, China)

Co-Chairs : Catherine Colin & Mamoru Ozawa

IHTC15-8441/PBL-B1-521

Stability and Mode Transition of Boiling on a Flat Surface Jianfeng Lu, Jing Ding (Sun Yat-Sen University, China)

IHTC15-9511/PBL-B1-522

Boiling Heat Transfer Characteristics and Film Boiling Collapse Temperature through the Two-Dimensional Temperature Field Measurement Hiroyasu Ohtake, Koji Hasegawa (Kogakuin University, Japan)

IHTC15-10081/PBL-B1-523

Effects of Porous SIC Deposition and High Thermal Conductive Graphene Layer on Critical Heat Flux Han Seo, In Cheol Bang (Ulsan National Institute of Science and Technology, Korea)

IHTC15-8856/PBL-B1-524

Boiling on an Isolated Nucleation Site Close to CHF Conditions Olivier Kannengieser (Toulouse University - IMFT, France), Wladimir Bergez, Catherine Colin (Toulouse University, France, CNRS, IMFT, France)

IHTC15-9423/PBL-B1-525

Effect of Kelvin-Helmholtz Instability on CHF for Thin Flat Plate Heater Jae Young Lee, Wooram Lee (Handong Global University, Korea)

IHTC15-9592/PBL-B1-526

Crisis in Pool Boiling: Alternative to Hydrodynamic Approach Victor. V. Yagov (National Research University "Moscow Power Engineering Institute", Russia)

15th, Friday

Session 53 (B1) [15:10 - 17:10]

PBL6 | Pool Boiling (6)

Co-Chairs : In Cheol Bang & Koichi Suzuki

IHTC15-8964/PBL-B1-531

Enhanced Transient Pool Boiling of Water on Nanoscale Textured Superhydrophilic Surfaces Li-Wu Fan, Jia-Qi Li, Dan-Yang Li, Liang Zhang, Zi-Tao Yu, Ya-Cai Hu (Zhejiang University, China)

IHTC15-9632/PBL-B1-532

Enhancement of Nucleate Pool Boiling Heat Transfer Using Water on Titanium Oxide and Silicon Oxide Surface

Sudev Das, Swapan Bhaumik (National Institute of Technology Agartala, India)

IHTC15-9551/PBL-B1-533

Modeling of Boiling Heat Transfer from Microstructured Surfaces Alexander Ustinov (Advanced Energy Technologies GmbH, Germany), Jovan Mitrovic (University of East Sarajevo, Bosnia and Herzegovina)

IHTC15-9004/PBL-B1-534

Study of the Combined Effects of Liquid Properties and Surface Micropatterning on Pool Boiling Heat Transfer Emanuele Teodori, Ana Moita, Antonio Moreira (University of Lisbon, Portugal)

IHTC15-9044/PBL-B1-535

An Experimental Study of Carbon Nanotube Coatings for Pool Boiling Heat Transfer Enhancement

Jin Yao Ho, Kai Choong Leong, Charles Yang, Indro Pranoto (Nanyang Technological University, Republic of Singapore)

IHTC15-8805/PBL-B1-536

Influence of Gap Size on Boiling and Condensation Co-Existing Phase Change Heat Transfer in Small Confined Space

Guangmeng Zhang, Zhongliang Liu (Key Laboratory of Heat Transfer and Energy Conversion, China), Li Wang, Lingyan Huang (Beijing Institute of Space Launch Technology)

Session 51 (B2) [8:40 - 10:20]

Two-phase, Spray/Droplet

Co-Chairs : Masahiro Osakabe & Francisco Vera-Garcia

IHTC15-8860/TPS-B2-511

Kinetic Modelling of Diesel Fuel Droplet Heating and Evaporation: Effects of Inelastic Collisions and Three Components

Room B2

Sergei Sazhin (University of Brighton, UK), Irina Shishkova (Moscow Power Engineering Institute, Russia, University of Brighton, UK)

IHTC15-9815/TPS-B2-512

Evaporation of Bi-Component Droplets in a Highly Turbulent Channel Flow Adrien Jean, Rudy Bazile, Bernard Ferret (Université de Toulouse, France)

IHTC15-9328/TPS-B2-513

Numerical Simulation of Heat Transfer and Gas Dynamics in Warm Spray Yanguang Shan, Feifei Gong, Cuihong Shen, Ling Li, Mei Lu (University of Shanghai for Science and Technology, China)

IHTC15-8593/TPS-B2-514

The Effect of Pulses Frequency on Flow and Heat Transfer Due to Intermittent Impinging Mist Jets

Maksim Pakhomov, Viktor I. Terekhov (Russian Academy of Sciences, Russia)

IHTC15-9060/TPS-B2-515

Experimental Study on Heat Transfer Characteristics of High-Velocity Circular Jet Impingement Boiling on the Nano-Characteristic Stagnation Zone Yuanyang Li, Yanjun Chen, Zhenhua Liu (Shanghai Jiaotong University, China)

15th, Friday

Session 52 (B2) [12:50 - 14:50]

TPM1 | Two-phase/Multiphase Flow (1)

Co-Chairs : Takeyuki Ami & Chien-Yuh Yang

IHTC15-8955/TPM-B2-521

R1234vf Heat Transfer Coefficient during Condensation in a Mini-Channel Multiport Tube Alejandro Lopez-Belchi, José Ramón García-Cascales, Francisco Vera-García, Fernando Illán-Gómez (Technical University of Cartagena, Spain)

IHTC15-8561/TPM-B2-522

Flow Condensation Heat Transfer on Engineered Surfaces

Chun-Wei Yao, Jorge Alvarado (Texas A&M University, USA), Charles Marsh (ERDC -Construction Engineering Research Laboratory, USA, University of Illinois at Urbana-Champaign, USA), Barclay Jones (University of Illinois at Urbana-Champaign, USA), Michael Collins (ERDC - Construction Engineering Research Laboratory, USA, University of Illinois at Urbana-Champaign, USA)

IHTC15-10072/TPM-B2-523

Gallium Melting in a Rectangular Box

Ori Ben-David, Avi Levy, Boris Mikhailovich, Asaf Azulay (Ben-Gurion University of the Negev, Israel)

IHTC15-8609/TPM-B2-524

Turbulent Mass Transfer Model to Predict Wax Deposition in Multiphase Flow in Pipelines Fabio Brum (Pontifícia Universidade Católica do Rio de Janeiro, Brazil), Sidney Stuckenbruck (Olympus Software Científico e Engenharia, Brazil), Angela Nieckele (Pontifícia Universidade Católica do Rio de Janeiro, Brazil)

IHTC15-9066/TPM-B2-525

Numerical Study of Slug Flow Heat Transfer in Microchannels Thilaksiri Bandara, Sherman C. P. Cheung, Gary Rosengarten (RMIT University, Australia)

IHTC15-9192/TPM-B2-526

Irreversibility Analysis of an Evaporator for Use in a Micro-Refrigeration Cycle Göker Türkakar, Tuba Okutucu-Özyurt (Middle East Technical University, Turkey) Session 53 (B2) [15:10 - 16:30]

TPM2 | Two-phase/Multiphase Flow (2)

Co-Chairs : Hosei Nagano & Sergei Sazhin

IHTC15-8793/TPM-B2-531

Regimes of Nonisothermal Scavenging of Soluble Gaseous Pollutants by Rain in the Atmosphere with Non-Uniform Concentration and Temperature Distributions Tov Elperin, Andrew Fominykh, Boris Krasovitov (Ben-Gurion University of the Negev, Israel)

IHTC15-8935/TPM-B2-532

Experimental Study on the Temperature and Pressure Distribution of Steam Jet in Subcooled Water Flow in a Restricted Channel

Xiao Zong, Tao Li, Xiao-Ping Yang, Wei Han, Ji-Ping Liu, Jun-Jie Yan (Xi'an Jiaotong University, China)

IHTC15-9113/TPM-B2-533

Numerical Investigation of Adiabatic Growth and Detachment of Gas/Vapor Bubbles Injected from a Submerged Orifice at Various Surface Inclinations Anastasios Georgoulas, Marco Marengo (University of Bergamo, Italy)

IHTC15-9456/TPM-B2-534

Melting, Solidification and Coalescence of Metallic Particles Invoked by Laser Heating Ram Dayal, Tatiana Gambaryan-Roisman (Technische Universität Darmstadt, Germany)

15th, Friday

Room C1

Session 51 (C1) [8:40 - 10:40]

TDY3

6 Thermodynamics (3)

Co-Chairs : Sebastian Fischer & Yasuyuki Miyamoto

IHTC15-9827/TDY-C1-511

Heat Transfer in Supersonic Flow over Blunt Body with Resonator of Hartmann Whistle Type Natalia Palchekovskaya (Central Aerohydrodynamic Institute, Russia)

IHTC15-9243/TDY-C1-512

Non-Equilibrium Electron Gas Thermodynamic Cycle with Nano Features Kazuaki Yazawa, Ali Shakouri (Purdue University, USA)

IHTC15-8937/TDY-C1-513

The Applied Condition of Lumped Parameter Method for Finite Mass Transfer Duration Jianping Cao, Cong Liu, Yinping Zhang (Tsinghua University, China)

IHTC15-9373/TDY-C1-514

A Study of Macroscopic Physical Meaning of Entropy Jing Wu (Huazhong University of Science & Technology, China)

IHTC15-9414/TDY-C1-515

Implementation of Entransy Analysis for Heat Transfer Optimization and System Design Menghe Sun, Xin-Rong Zhang (Peking University, China)

IHTC15-8483/TDY-C1-516

Internal Symmetries, Fundamental Invariants and Convective Heat Transfer from a Rotating Disc

Christian Helcig, Stefan aus der Wiesche (Muenster University of Applied Sciences, Germany), Igor V. Shevchuk (University of Stuttgart, Germany)

Session 52 (C1) [12:50 - 14:30]

Co-Chairs : Soufiani Anouar & Kenichi Kobayashi

IHTC15-9942/CNV-C1-521

Heat Transfer Performance of Finless Heat Exchanger Using Airfoil-Shaped Tubes with Extended Leading or Trailing Edge Section Hajime Onishi, Akihiro Yamamoto, Yukio Tada, Akira Takimoto (Kanazawa University, Japan)

IHTC15-9230/CNV-C1-522

Modified Endwall Fluid Flow in a Dimpled Pin Fin Array for Heat Transfer Enhancement Stephan Roux, Gazi Mahmood, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8698/CNV-C1-523

Heat Transfer and Pressure Drop of Serrated Finned Tube Banks in Forced Convection Akira Yamada, Hiroyuki Nakaharai, Seiji Goto, Manabu Oda (Mitsubishi Heavy Industries, Japan)

IHTC15-8338/CNV-C1-524

The Influence of Surface Roughness on Heat Transfer in the Transitional Flow Regime Marilize Everts, Samantha Ayres, Franscois Mulock Houwer, Calvin Vanderwagen, Nicola M. Kotze, Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-9092/CNV-C1-525

High-Order Numerical Implementation of Surface Radiation for the Coupling with Natural Convection in an Air-Filled Square Cavity Ronnie Knikker, Shihe Xin (INSA-Lyon, France), Ren Dai (University of Shanghai for Science and Technology, China)

15th, Friday

Session 53 (C1) [15:10 - 16:30]

CNV2 Convection (2)

Co-Chairs : Koichi Ichimiya & Hervé Pabiou

IHTC15-9209/CNV-C1-531

Turbulent Thermal Convection in an Enclosure with Differently Inclined Horizontal Wall: A LES study

Saša Kenjereš (Delft University of Technology, The Netherlands)

IHTC15-9593/CNV-C1-532

Modeling the Thermal Environment in an Operating Room Senhorinha Teixeira, Nelson Rodrigues, Alberto Miguel, Ricardo Oliveira, José Teixeira (University of Minho, Portugal), João Baptista (University of Porto, Portugal)

IHTC15-8429/CNV-C1-533

Fluid Flow and Heat Transfer in Microchannel Heat Sinks with Zigzag Longitudinal Fins Ganbat Davaa, Odgerel Jambal (Yuge National College of Maritime Technology, Japan), Yogesh Jaluria (Rutgers, The State University of New Jersey, USA)

IHTC15-9355/CNV-C1-534

Study on Period Flow and Heat Transfer Characteristics for Backward-Facing Step in Transition Flow

Minbo Zhong (Jiangsu University, China, Nantong University, China), Shuai Zou (Nantong University, China), Yinnan Yuan (Jiangshu University, China, Nantong University, China), Guannan Xi (Nantong University, China)

Room C2

HTE7 Heat Transfer Enhancement (7)

Co-Chairs : Wei Liu & Shuichi Torii

Session 51 (C2) [8:40 - 10:40]

IHTC15-8491/HTE-C2-511

Entransy Balance Equation for Heat Transfer with Phase Change Wenhua Wang, Xuetao Cheng, Xingang Liang (Tsinghua University, China)

IHTC15-9231/ HTE-C2-512

Heat Transfer Measurements in a Swirl Chamber Using the Transient Liquid Crystal Technique

Christoph Biegger, Bernhard Weigand (University of Stuttgart, Germany)

IHTC15-8669/HTE-C2-513

Impingement Cooling with Spent Flow in the Blade Leading Edge Using Double Swirl Chambers

Gang Lin, Karsten Kusterer (B&B-AGEMA GmbH, Gremany), Dieter Bohn (RWTH Aachen University, Germany), Takao Sugimoto, Ryozo Tanaka, Masahide Kazari (Kawasaki Heavy Industries, LTD., Japan)

IHTC15-9965/HTE-C2-514

Experimental Study and Prediction of Film Cooling Effectiveness for a Guide Vane in Heavy Gas Turbine

Wei Wang, Jianmin Gao, Liang Xu, Xiaojun Shi (Xi'an Jiaotong University, China)

IHTC15-8319/HTE-C2-515

An Investigation into Momentum and Temperature Fields of a Meso-Scale Slot Synthetic Jet for a Small Jet-to-Surface Spacing Omidreza Ghaffari (Ozyegin University, Turkey), Baris Dogruoz (Cisco Systems Inc., USA),

Omidreza Ghaffari (Ozyegin University, Turkey), Baris Dogruoz (Cisco Systems Inc., USA), Mehmet Arik (Ozyegin University, Turkey)

IHTC15-8667/HTE-C2-516

Transient Heat Transfer for a Twisted Plate in Forced Convection Flow of Helium Gas Qiusheng Liu, Zhou Zhao, Katsuya Fukuda (Kobe University, Japan)

15th, Friday

Session 52 (C2) [12:50 - 14:30]

HTE8 | Heat Transfer Enhancement (8)

Co-Chairs : Kazuya Tatsumi & Victoria Timchenko

IHTC15-8426/HTE-C2-521

Heat Transfer Analysis of Aluminum Honeycomb Panels Incorporating Microencapsulated PCM

Chi-ming Lai (National Cheng-Kung University, Taiwan), Shuichi Hokoi (Kyoto University, Japan)

IHTC15-9952/HTE-C2-522

Vortex Heat Transfer Enhancement in Dimpled Channels

Alexander I. Leontiev (Bauman Technical University, Russia), Sergey Isaev (Saint-Petersburg State University of Civil Aviation, Russia), Nikolai Kornev (University of Rostock, Germany), Yaroslav Chudnovsky (Gas Technology Institute, USA), Egon Hassel (University of Rostock, Germany)

IHTC15-8765/HTE-C2-523

A Numerical-Experimental Study of Heat Transfer Enhancement Using Unconfined Steady and Pulsating Turbulent Air Jet Impingement Sajad Alimohammadi, Tim Persoons, Darina B. Murray (Trinity College, Ireland)

IHTC15-8983/HTE-C2-524

Applying Phase Separation of a Solvent System with a Lower Critical Solution Temperature for Enhancement of Cooling Rates by Forced and Free Convection Amos Ullmann, Itay Lipstein, Neima Brauner (Tel Aviv University, Israel)

IHTC15-9271/HTE-C2-525

Unravelling Convective Heat Transfer in the Rotated Arc Mixer

Michel Speetjens, Özge Baskan (Eindhoven University of Technology, The Netherlands), Guy Metcalfe (Commonwealth Scientific and Industrial Research Organisation, Australia), Herman Clercx (Eindhoven University of Technology, The Netherlands) Session 53 (C2) [15:10 - 17:10]

Co-Chairs : Tatsuya Kawaguchi & Amos Ullmann

IHTC15-9839/HTE-C2-531

Effect of Surface Orientation on the Rewetting Phenomena during Jet Impingement Cooling Agrawal Chitranjan (Maharana Pratap University of Agriculture and Technology, india), Ravi Kumar, Akhilesh Gupta (Indian Institute of Technology Roorkee, India), Barun Chatterjee (Bhabha Atomic Research Centre, India)

IHTC15-9448/HTE-C2-532

Carbon Nanotubes as Thermal Interface Material Enhanced with Liquid Metal Alloy Yulong Ji, Gen Li, Chao Chang, Yuqing Sun (Dalian Maritime University, China), Hongbin Ma (University of Missouri, USA)

IHTC15-8700/HTE-C2-533

Application of Heat Transfer Technology with Phase Change Inhibited to Integrated Heat Deriving and Radiating Systems

Suvit Lee (Zhejiang Jiaxi Optoelectronic Equipment Manufacturing Co.Ltd., China), Bangxian Wu (Chinese Academy of Sciences, China)

IHTC15-9148/HTE-C2-534

Geometric Optimisation of Multi-Layered Microchannel Heat Sink with Different Flow Arrangements

Olayinka O. Adewumi (University of Pretoria, South Africa), Tunde Bello-Ochende (University of Cape Town, South Africa), Josua P. Meyer (University of Pretoria, South Africa)

IHTC15-8244/HTE-C2-535

Microscopic Mechanism of Cavitation Enhanced Heat Transfer: A Modeling Study Bin Liu (Chinese Academy of Sciences, China, University of the Chinese Academy of Sciences, China), Jun Cai, Xiulan Huai (Chinese Academy Sciences, China)

IHTC15-8900/HTE-C2-536

Influence of Several Parameters on Heat Storage and Release Enhancement Behavior of Latent Heat Storage Paraffin with Aluminum Fiber Materials Naoto Haruki, Akihiko Horibe, Yoshihiko Sano, Kohei Hachiya (Okayama University, Japan)

15th, Friday

Room D

Session 51 (D) [8:40 - 10:20]

MCV

Mixed Convection Co-Chairs : Tsuyoshi Kawanami & Jose Teixeira

IHTC15-9081/MCV-D-511

Mixed Convection Heat Transfer in a Pressurizing Confined-Jet Flow Field

Melissa Heath, Peter Woodfield, Wayne Hall (Griffith University, Australia), Masanori Monde (Saga University, Japan)

IHTC15-9524/MCV-D-512

Numerical Study on Entropy Generation for Mixed Convection in Square Enclosures for Isothermally and Non-Isothermally Hot Bottom Wall

Monisha Roy, Tanmay Basak, Satyajit Roy (Indian Institute of Technology Madras, India)

IHTC15-9297/MCV-D-513

Experimental Investigation on Mixed Convection in Horizontal Channels Heated Below and Partially Filled with Aluminium Foam

Bernardo Buonomo, Oronzio Manca, Lorenzo Marinelli, Sergio Nardini (Seconda Universita' degli Studi di Napoli, Italy)

IHTC15-8059/MCV-D-514

Experimental Investigation of Mixed Convection Heat Transfer from Heated Vertical Rectangular Fin Array

Javanti Shete, Naravan Sane, S. Pavithran (Vishwakarma Institute of Technology, India)

IHTC15-9165/MCV-D-515

Energy Conservative Dissipative Particle Dynamics Simulation of Mixed Convection in Complex Geometries with Moving Surface

Zhi-Hong Cao, Kang Luo, Hong-Liang Yi, He-Ping Tan (Harbin Institute of Technology, China)

Session 51 (F) [8:40 - 10:40]

NCV3	Natural	Convection	(3)
------	---------	------------	-----

Co-Chairs : Pratibha Biswal & Isao Kataoka

IHTC15-8565/NCV-F-511

Large-Eddy Simulations of Plumes with and without Turbulent Diffusion Flames Hitoshi Suto, Yasuo Hattori (Central Research Institute of Electric Power Industry, Japan)

IHTC15-9046/NCV-F-512

Three-Dimensional Computational Study of Natural Convection in a Non-Uniformly Heated Vertical Open-Ended Channel

Oxana A. Tkachenko, Svetlana Tkachenko, Victoria Timchenko, John A. Reizes (The University of New South Wales, Australia), Guan Heng Yeoh (The University of New South Wales, Australian Nuclear Science and Technology Organisation, Australia), Graham de Vahl Davis (The University of New South Wales, Australia)

IHTC15-9291/NCV-F-513

Comparative Study of Numerical Simulations of a 2D Buoyancy-Driven Flow in a Vertical Channel Asymmetrically Heated with or without External Domain Charles Garnier, Anne Sergent, Yann Fraigneau, Patrick Le Quere (LIMSI UPR CNRS 3251, France)

IHTC15-8624/NCV-F-514

A Numerical Study of g-Jitter Effects in Cubic-Cavity Convection in Low Gravity Keisuke Tatasumoto (Doshisha University, Japan), Hirochika Tanigawa (Maizuru National College of Technology, Japan), Katsuya Hirata (Doshisha University, Japan)

IHTC15-9053/NCV-F-515

Natural Convection in an Inclined Differentially Heated Square Cavity Steven Armfield, Michael Kirkpatrick, Nicholas Williamson (Sydney University, Australia), Wenxian Lin (James Cook University, Australia)

IHTC15-9747/NCV-F-516

Natural Convection in an Open Vertical Channel with Heated Walls at high Rayleigh Number Christophe Daverat, Yigin Li (Institut National des Sciences Appliquées, France), Hervé Pabiou (Centre National de la Recherche Scientifique, France), Christophe Ménézo, Shihe Xin (Institut National des Sciences Appliquées, France)

15th, Friday

Session 52 (F) [12:50 - 14:50]

Optimal Control/Theory

Co-Chairs : Tomoyuki Hatakeyama & Zhen Li

IHTC15-9477/OPT-F-521

Heat Conduction Optimization of Anisotropic Composite Material Using Simulated Annealing Algorithm

Chao Yuan, Lan Li, Xiaobing Luo (Huazhong University of Science and Technology, China)

IHTC15-9670/OPT-F-522

Adjoint-Based Optimum Thermal Control of Pulsed Laser Diodes Kenichi Morimoto, Yuji Suzuki (The University of Tokyo, Japan)

IHTC15-8602/OPT-F-523

Virtual Distribution and Mixing Entransy Analysis Method Xiaodong Qian, Zhen Li, Zhixin Li, Zhiguang He (Tsinghua University, China)

IHTC15-9018/OPT-F-524

Multi-Objective Optimization of Vortex Generators Position and Angles in Fin-Tube Compact Heat Exchanger at Low Reynolds Number Using Neural Network and Genetic Algorithm Leandro Salviano, Daniel Dezan, Jurandir Yanagihara (University of São Paulo, Brasil)

IHTC15-8411/OPT-F-525

Study on Model Predictive Control to Minimize Temperature Change at Multi Positions in Vertical Plate with Varying Heat Generation Shigeki Hirasawa, Tsuyoshi Kawanami, Katsuaki Shirai (Kobe University, Japan)

IHTC15-9168/OPT-F-526

Numerical Topology Optimization of Heat Sinks Tijs Van Oevelen, Martine Baelmans (KU Leuven, Belgium)

Session 53 (F) [15:10 - 17:10]

Co-Chairs : Shigeo Maruyama & Sebastian Volz

IHTC15-8664/NMT-F-531

Enhanced Thermal Conductivity of Epoxy Composites with Hybrid Carbon-Based Functional Materials and Nano-Copper Particles Ping Zhang, Qiang Li, Yimin Xuan (Nanjing University of Science and Technology, China)

IHTC15-9153/NMT-F-532

Radiative Properties of a Nanofluid Mixture Jan Eggers, Stephan Kabelac (Leibniz University Hannover, Germany)

IHTC15-8890/NMT-F-533

Thermal and Electromagnetic Modeling of a Multi-Layer PCs Thermal Protection Structure for Laser Ablation Hao-Chun Zhang, Yang Zhao, Hai-Yan Yu, Chen-Hui Qiu, Yao Li (Harbin Institute of Technology, China)

IHTC15-9390/NMT-F-534

The Experimental Investigation of Modified Surface Effect on Microbial Fouling Characteristics

Zhiming Xu (Northeast Dianli University, China), Zuodong Liu (North China Electric Power University, China), L. Wu (Northeast Dian Li University, China), Yilong Zhang (North China Electric Power University, China), Z. Zhang (Northeast Dianli University, China)

IHTC15-9823/NMT-F-535

Experimental Analysis of High Weber Number Drop Impact onto Super-Hydrophobic and Hydrophobic Surfaces

Fabio Villa (University of Bergamo, Italy), Carlo Antonini (Eidgenössische Technische Hochschule, Switzerland), Ilia Roisman (Technical University of Darmstadt, Germany), Marco Marengo (University of Bergamo, Italy)

IHTC15-9482/NMT-F-536

Superhydrophobicity or Icephobicity for an Effective Icing Mitigation Strategy? Carlo Antonini (Eidgenössische Technische Hochschule, Swizerland), Alidad Amirfazli (York University, Canada), Marco Marengo (University of Bergamo, Italy)

15th, Friday

Room G

Session 51 (G) [8:40 - 10:20]

NMM2 Nano/Micro Scale Measurement and Simulation (2)

Co-Chairs : Hirofumi Daiguji & Konstantinos Termentzidis

IHTC15-8732/NMM-G-511

The Effect of Inner Surface Roughness and Heating on Friction Factor in Horizontal Mini-Tubes

Lap Mou Tam (University of Macau, Institute for the Development and Quality, China), Hou Kuan Tam (University of Macau, China), Afshin J. Ghajar(Oklahoma State University, Stillwater, USA), Wa San Ng, Choi Keng Wu (University of Macau, Institute for the Development and Quality, China)

IHTC15-8543/NMM-G-512

Temperature Dependent Thermal Transport across the Interfaces between CNT Array and Adjacent Layers

Zhaoliang Wang, Yong Ma, J. G. Liang (China University of Petroleum, China), D. W. Tang (Chinese Academy of Science Beijing, China)

IHTC15-9503/NMM-G-513

Behaviors of Gas Flow in Tree-Shaped Microchannel Networks Zilong Deng (Southeast University, China), Yongping Chen (Yangzhou University, China), Chengbin Zhang (Southeast University, China)

IHTC15-9453/NMM-G-514

Numerical Study of Ethanol Reforming in Micro-Channels Somasree Roychowdhury, Sarit Kumar Das, Thirumalachari Sundararajan (Indian Institute of Technology Madras, India)

IHTC15-8946/NMM-G-515

The Flow Resistance and Heat Transfer Characteristics of Micro Pin-Fins with Different Cross-Section Shapes

Zhigang Liu, Ning Guan, Chengwu Zhang, Guilin Jiang (Energy Research Institute of Shandong Academy of Sciences, China)

Session 52 (G) [12:50 - 14:50]

NMM3 Nano/Micro Scale Measurement and Simulation (3)

Co-Chairs : Weigang Ma & Koji Takahashi

IHTC15-9459/NMM-G-521

Investigation of Thermal Resistance and Heat Conduction at α-Quartz-Liquid Alkane Interfaces Using Nonequilibrium Molecular Dynamics Simulations Hari Krishna Chilukoti, Gota Kikugawa (Tohoku University, Japan), Masahiko Shibahara (Osaka University, Japan), Taku Ohara (Tohoku University, Japan)

IHTC15-9136/NMM-G-522

Gas Molecular Momentum Exchange Characteristics in Nanopores Qixin Liu, Zhiyong Chai (Chongqing University of Science and Technology, China)

IHTC15-9429/NMM-G-523

Evaporation Dynamics of Microdroplets Mitsuhiro Matsumoto, Junichi Tatsumi, Masaya Hosoda (Kyoto University, Japan)

IHTC15-9391/NMM-G-524

Heat Transfer across a Confined Thin Film with Structural or Mass Disorder: A Molecular Dynamics Study Cheng Shao, Hua Bao (Shanghai Jiao Tong University, China)

IHTC15-9000/NMM-G-525

*Kinetic Study of Li*₂SO₄.*H*₂O *Dehydration Using Microscopy and Modeling* Shuiquan Lan, Herbert Zondag, Camilo Rindt (Eindhoven University of Technology, The Netherlands)

IHTC15-9418/NMM-G-526

MD Simulation on Cryogenic Sublimation Dynamics of Dry Ice Nanoparticles Yi-min Chen, Lin Chen, Xin-Rong Zhang (Peking University, China)

15th, Friday

Session 53 (G) [15:10 - 16:50]

NMM4 Nano/Micro Scale Measurement and Simulation (4)

Co-Chairs : Shigenao Maruyama & Masahiko Shibahara

IHTC15-9922/NMM-G-531

Adsorption/Desorption and Transport of Water in Two-Dimensional Hexagonal Mesoporous Silica

Hirofumi Daiguji, Kyohei Yamashita, Hideki Yanagihara (The University of Tokyo, Japan), Akira Endo (National Institute of Advanced Industrial Science and Technology, Japan)

IHTC15-9179/NMM-G-532

Series Study on the Thermal Transport Properties of Nanofilm by Applying Transient Thermoreflectance Method

Weigang Ma, Xing Zhang (Tsinghua University, China), Keisuke Kubo, Masamichi Kohno, Yasuyuki Takata, Tatsuya Ikuta, Koji Takahashi (Kyushu University, Japan)

IHTC15-8343/NMM-G-533

Thermal Conductivity of Amorphous/Crystalline Silicon Nanowires and Superlattices Konstantinos Termentzidis (LEMTA, France), Etienne Blandre (INSA de Lyon, France), Arthur France-Lanord (Commissariat `a l'Energie Atomique et aux Energies Alternatives, Saclay, France.), Valentin Jean (University of Lorraine, France), Samy Merabia, Tristan Albaret (University of Lyon, France), David Lacroix (University of Lorraine, France)

IHTC15-8885/NMM-G-534

Synthesis and Thermal Conductivity of Monodisperse Hollow Silica Nanospheres Tao Gao (Norwegian University of Science and Technology, Norway), Bjørn Petter Jelle (SINTEF Building and Infrastructure, Norway), Linn Ingunn Sandberg, Arild Gustavsen (Norwegian University of Science and Technology, Norway)

IHTC15-8366/NMM-G-535

Monte Carlo Simulations of the Thermal Properties of Silicon and Germanium Mesoporous Nanostructures

Valentin Jean, Sebastien Fumeron, Konstantinos Termentzidis, David Lacroix (Université de Lorraine, France)

Session 51 (H) [8:40 - 10:40]

Co-Chairs : Denis Maillet & Hajime Nakamura

IHTC15-8419/CND-H-511

Determination of Thermal Contact Resistance Coefficients through Thermo-Mechanical Simulation

Room H

Yona Frekers, Sarah Vieler, Simon van Buren, Marc Deppermann, Reinhold Kneer (RWTH Aachen University, Germany)

IHTC15-9330/CND-H-512

High Thermal Conductivity Performance of Compressed Graphene Sheet Layers Yuan-Xiang Fu, Xiao-Ming Wang, Dong-Chuan Mo, Shu-Shen Lu (Sun Yat-sen University, China)

IHTC15-8596/CND-H-513

Study of Thermal Conductance in a Strip-Roll System Jean-Marie Buchlin, M. Delsipée, Ph. Planquart (Von Karman Institute for Fluid Dynamics, Belgium), M. Renard (DREVER Int. SA, Belgium)

IHTC15-8758/CND-H-514

The Influence of Deposited Metal Material Parameters on the Heat Transfer Process and Fluid Dynamics in the Welding Pool

Lige Tong, Jingchen Gu, Shaowu Yin, Li Wang (University of Science & Technology Beijing, China), Shiwu Bai (Pipeline Research Institute of China National Petroleum Corporation, China)

IHTC15-8887/CND-H-515

Two-Region Fin Model Adjacent Temperature Profile Interactions Louis Desgrosseilliers, Dominic Groulx, Mary Anne White (Dalhousie University, Canada)

IHTC15-8444/CND-H-516

Thermal Protection Design for Flight Data Recorders Ruhul Amin Rana, Ri Li (University of British Columbia, Canada)

15th, Friday

Session 52 (H) [12:50 - 14:50]

CND4 Conduction (4)

Co-Chairs : Dominic Groulx & Shinji Kimijima

IHTC15-9137/CND-H-521

Experimental Investigation on Unsteady Conjugate Heat Transfer Caused by Flow Turbulence

Hajime Nakamura, Naoki Shiibara, Shunsuke Yamada (National Defense Academy, Japan)

IHTC15-9556/CND-H-522

Conjugate Cooling of Protruding Heaters in a One Side Closed Duct by Impinging Flow Ismael de Marchi Neto (Technological Federal University of Paraná, Brasil), Carlos Altemani (University of Campinas, Brasil)

IHTC15-9383/CND-H-523

Thermal Management Characteristics of Lithium-Ion Batteries According to the Arrangement Hee Won Lee, Jong Hyeon Son, II Seouk Park (Kyungpook National University, Korea)

IHTC15-9253/CND-H-524

Heat Transfer Analysis in Human Skin Subjected to Flash Fire: Investigation of Dual Phase Lag Phenomenon

Uday Raj, Prabal Talukdar, Apurba Das, Alagiru Samy (Department of Textile Technology, IIT Delhi, India)

IHTC15-9444/CND-H-525

Numerical Simulation on Coupling of Heat Conduction and Curing of Polymer Composite with Finite Volume Method

Yan Yu, Pingjian Ming, Yafei Jiao, Xinyu Zhang (Harbin Engineering University, China)

IHTC15-8813/CND-H-526

The Mean Free Path of Gas Molecules in Confined Nano-Porous Structures Gaosheng Wei, Lixin Wang, Xiaoze Du, Yongping Yang (North China Electric Power University, China)

Session 53 (H) [15:10 - 16:50]

Co-Chairs : Katsunori Hanamura & Atsuki Komiya

IHTC15-9254/FLM-H-531

Thin Film Evaporation in Microchannel Membrane for Solar Vapor Generation Ammar A. Alsheghri, TieJun Zhang (Masdar Institute of Science and Technology, UAE)

IHTC15-8899/FLM-H-532

Measurement of Liquid Film Thickness Formed between Colliding Twin Bubbles during Coalescence Process Takayuki Morokuma, Yoshio Utaka (Yokohama National University, Japan)

IHTC15-9537/FLM-H-533

Evaporation, Dynamics and Crisis Phenomena in Thin Liquid Films Sheared by Gas in a Narrow Channel

Oleg Kabov, Dmitry Zaitsev, Yulia Kabova, Vyacheslav Cheverda (Kutateladze Institute of Thermophysics Siberian Branch of Russian Academy of Sciences, Russia)

IHTC15-9565/FLM-H-534

Modeling of Nanoporous Membranes for High Flux Thin Film Evaporation Zhengmao Lu, Shankar Narayanan, Daniel Hanks (Massachusetts Institute of Technology, USA), Rishi Raj (Indian Institute of Technology Patna, India), Rong Xiao (Exxon Mobile, USA), Dion Antao, Evelyn N. Wang (Massachusetts Institute of Technology, USA)

IHTC15-9671/FLM-H-535

Marangoni Effect in Heated Falling Liquid Film on a Vertically Confined Plate Fang-Fang Zhang, Yu-Dong Ding, Xun Zhu, Hong Wang, Qiang Liao, Gan Song (Chongqing University, China)

15th, Friday

Room I

Session 51 (I) [8:40 - 10:20]

PMD5 | Porous Media (5)

Co-Chairs : Peixue Jiang & Ken Okazaki

IHTC15-9617/PMD-I-511

Influence of Porous Cathode Microstructure on Overpotential Characteristics of Solid Oxide Fuel Cells

Kota Miyoshi, Hiroshi Iwai (Kyoto University, Japan), Masashi Kishimoto (Imperial College, London), Wataru Matsumoto, Motohiro Saito, Hideo Yoshida (Kyoto University, Japan)

IHTC15-8665/PMD-I-512

Numerical Investigation of the Flow and Temperature Uniformity in the Reactor Core of a Pebble Bed HTGR Using Porous Media Method

Xiawei Li, Qi Min, Xinxin Wu (Tsinghua University, China), Shixian Liu (Nuclear and Radiation Safety Center, China)

IHTC15-8763/PMD-I-513

An Investigation of Anisotropic Structure of Wood-Derived Char Using X-Ray CT and Effect of Particle Aspect Ratio on its Gasification Reactivity

Teeranai Pattanotai, Ryota Nakano, Hirotatsu Watanabe, Ken Okazaki (Tokyo Institute of Technology, Japan)

IHTC15-9837/PMD-I-514

Surface Charge Effects on Reactive Transports in Microporous Media Li Zhang, Moran Wang (Tsinghua University, China)

IHTC15-9073/PMD-I-515

Thermal Entrance Effects in a Thermoacoustic Stacked Screen Regenerator Simon Bühler (University of Twente, Netherlands), Douglas Wilcox (Chart Industries-Qdrive, USA), Joris Oosterhuis, Theo van der Meer (University of Twente, Netherlands)

Session 52 (I) [12:50 - 14:30]

Co-Chairs : Naoto Haruki & Peter Vadasz

IHTC15-8742/PMD-I-521

A Mathematical Model for a Boiling Process of Food Stuff Based on the Porous Media Theory

Takao Yoshinaga (Osaka University, Japan), Tomoko Hara (Kobe Yamate College, Japan)

IHTC15-9730/PMD-I-522

Direct-Inverse Analysis of Heat Transfer in Micro-Models of Porous Media Carolina Palma Naveira-Cotta (Federal University of Rio de Janeiro, Brazil)

IHTC15-8848/PMD-I-523

Modelling Heat and Mass Transfer in Porous Material during Pyrolysis Using Operator Splitting and Dimensionless Analysis

Julien Maes, Ann Muggeridge, Matthew Jackson (Imperial College London, UK), Michel Quintard (Institut de Mecanique des Fluides de Toulouse, France), Alexandre Lapene (Total, S. A., France)

IHTC15-9108/PMD-I-524

Towards a General Spatial Averaging Procedure for Multi-Scale Flow Modeling in Heat Transfer Devices with Repetitive Fin Structures Geert Buckinx, Martine Baelmans (KULeuven, Belgium)

IHTC15-9217/PMD-I-525

Simulation of Multiphase Flow and Heat Transfer in Porous Media Using Lattice Boltzmann Method

Dongdong Wang, Jun Shen, Zhichun Liu, Wei Liu (Huazhong University of Science and Technology, China)

15th, Friday

Session 53 (I) [15:10 - 16:30]

PMD7 | Porous Media (7)

Co-Chairs : Gen Inoue & Theo van der Meer

IHTC15-9359/PMD-I-531

 ${\rm CO}_2$ Trapping Phenomena in Porous Media of Geological Storage by Lattice Boltzmann Method

Suguru Uemura, Atsuto Noda, Shohji Tsushima, Shuichiro Hirai (Tokyo Institute of Technology, Japan)

IHTC15-8734/PMD-I-532

Numerical Study of Physical Characteristic of Porous Media Containing Methane Hydrate Using Pore Network Model

Jiagi Wang, Yongchen Song, Jiafei Zhao, Di Liu, Lei Yang, Zihao Zhu, Xiaoqing Chen (Dalian University of Technology, China)

IHTC15-9025/PMD-I-533

Numerical Modeling of Three Dimensional Heat Transfer and Fluid Flow through Interrupted Plates Using Unit Cell Scale

Chao Zhang, Terrence Simon, Perry Li, James Van de Ven (University of Minnesota, USA)

IHTC15-9937/PMD-I-534

Performance of a Drainage Trench Employed as Ground Heat Exchanger Michele Bottarelli (Università di Ferrara, Italy), Hikari Fujii (Akita University, Japan), Vittorio Di Federico (Università di Bologna, Italy)

Room J

SAT Spray and Atomization

Co-Chairs : Shuhei Inoue & Paolo E. Santangelo

IHTC15-8859/SAT-J-511

Session 51 (J) [8:40 - 10:20]

Experimental and Theoretical Study on the Thermal Characteristics of Flashing Spray Cooling Using R404a

Zhi-Fu Zhou, Bin Chen (Xi'an Jiaotong University, China), Guo-Xiang Wang (University of Akron, USA)

IHTC15-9805/SAT-J-512

Experimental Study on Heat Transfer Characteristics of Spray Cooling Ni Liu (University of Shanghai for Science and Technology, China), Jingde Zhao (Donghua University, China)

IHTC15-9821/SAT-J-513

Experimental Investigation of Enhanced Spray Cooling on Nano- and Hybrid Micro/Nano-Structured Surfaces Jiannan Chen, Zhen Zhang, Peixue Jiang (Tsinghua University, China)

IHTC15-9481/SAT-J-514

Thermal Behaviors of Droplet-Substrate in Thermal Spray New Applications Guanghua Wei (Shanghai Jiao Tong University, China), Lili Zheng (Tsinghua University, China), Changying Zhao (Shanghai Jiao Tong University, China), Sanjay Sampath (Stony Brook University, USA)

IHTC15-8977/SAT-J-515

The Effect of Liquid Mass Flow Rate on Heat Transfer for an Air-Water Atomizing Mist Jet Cian Quinn, Darina Murray, Tim Persoons (Trinity College Dublin, Ireland)

15th, Friday

Session 52 (J) [12:50 - 14:50]

CMB1 Combustion (1)

Co-Chairs : Yoshihiro Deguchi & Yoshitaka Fukuyama

IHTC15-8589/CMB-J-521

Effects of Local Flame Displacement Velocity on Turbulent Burning Velocity for Stoichiometric Hydrogen-Oxygen-Dilution Gas Mixtures Masaya Nakahara, Fumiaki Abe, Kenichi Tokunaga (Ehime University, Japan)

IHTC15-9097/CMB-J-522

Hydrogen Combustion in the Turbulent Boundary Layer on a Permeable Surface Vladimir Lukashov, Vladimir Terekhov (Institute of Thermophysics SB RAS, Russia)

IHTC15-8744/CMB-J-523

Effect of Ambient Pressure on Soot Formation in Oxy-Fuel Spray Jet Flame Tomoaki Kitano, Jun Nishio, Ryoichi Kurose, Satoru Komori (Kyoto University, Japan)

IHTC15-9464/CMB-J-524

Role of CO_2 in the Soot Formation and Reduction Mechanisms in CH₄ Flat Flame Doped with Toluene under O_2/CO_2 Environments Hirotatsu Watanabe, Shunsuke Sugai, Ken Okazaki (Tokyo Institute of Technology, Japan)

IHTC15-9830/CMB-J-525

Relaxation Phenomena in Reaction-Diffusion Processes Juan Ramos (Universidad de Malaga, Spain)

IHTC15-9466/CMB-J-526

Alternating Currents Enhanced PAHs Formation in Nonpremixed Jet Flames Yuan Xiong, Minsuk Cha, Sukho Chung (King Abdullah University of Science and Technology, Saudi Arabia)

Session 53 (J) [15:10 - 17:10]

Co-Chairs : Juan Ramos & Hirotatsu Watanabe

IHTC15-9164/CMB-J-531

A Numerical Study on the Combustion and Heat Transfer Characteristics of a Spark Ignited Engine Applying Heat Insulation Coatings to the Combustion Chamber Wall Surface Akira Kikusato, Jin Kusaka, Yasuhiro Daisho (Waseda University, Japan)

IHTC15-9980/CMB-J-532

On Heat Transfer in the Stabilization Zone of an Attached Methane Flame in Air Coflow Sylvain Lamige, Cédric Galizzi, Manuel Kühni (Centre de Thermique de Lyon, France), Kevin M. Lyons (North Carolina State University, USA), Frédéric André, Dany Escudié (Centre de Thermique de Lyon, France)

IHTC15-9417/CMB-J-533

CFD Analysis of Stationary Fire Whirls and Moving Fire Whirls Crossing Over Barriers in Urban Fires

Koyu Satoh, Naian Liu, Xiaodong Xie, Wei Gao (University of Science and Technology, China)

IHTC15-9387/CMB-J-534

The Importance of Detail Reaction Mechanisms for Temperature Field Predictions of Compartment Firs

Chun Yuen, Guan Heng Yeoh (University of New South Wales, Austlaria), Richard Kwok Kit Yuen (City University of Hong Kong, Hong Kong), Victoria Timchenko (University of New South Wales, Austlaria)

IHTC15-9238/CMB-J-535

Experimental and Numerical Study of a Cooled Rocket Combustion Chamber Luc-Henry Dorey, Philippe Grenard, Lionel Matuszewski, Laurent Selle (Office National d'Etudes et de Recherches Aérospatiales, France)

IHTC15-8615/CMB-J-536

Research on Combustion Process in a Novel Microcombustor with Block Inserts Wenming Yang, Dongyue Jiang, Kian Jon Chua, Kian Yong Chua (National University of Singapore, Singapore)

15th, Friday

Room K

Session 51 (K) [8:40 - 10:40]

TMG1 | Thermal Management (1)

Co-Chairs : Leong Kai Choong & Toshio Tomimura

IHTC15-8847/TMG-K-511

Thermal Performance of a Multi-Channel Heat Exchanger-Reactor Xiaofeng Guo, Yilin Fan, Lingai Luo (Université de Nantes, France)

IHTC15-8938/TMG-K-512

Startup Characteristic of Loop Heat Pipes for Alpha Magnetic Spectrometer Cryocoolers Naihua Wang, Zheng Cui, Feng Luo, Lin Cheng (Shandong University, China)

IHTC15-9354/TMG-K-513

Preliminary Experimental Study of Start-Up Behavior in Nitrated Gravity Heat Pipe Yuting Wu, Qiang Meng (Beijing University of Technology, China), Yaxuan Xiong (Beijing University of Civil Engineering and Architecture, China), Shanwei Liu, Wujun Cui, Chongfang Ma (Beijing University of Technology, China), Deying Li (Beijing University of Civil Engineering and Architecture, China)

IHTC15-9120/TMG-K-514

Fuel Cell Co-Generation System with Loop Heat Pipe Based Thermal Control Randeep Singh, Masataka Mochizuki, Yuji Saito, Thang Nguyen, Zhen Guo, Masakazu Ohashi, Tien Nguyen, Ehsan B. Haghighi, Vijit Wuttijumnong (Fujikura Ltd, Japan)

IHTC15-9656/TMG-K-515

An Experimental Analysis of an Open Loop Pulsating Heat Pipe Operating with a Dielectric Working Fluid for Embedded Power Electronic Applications

Daniel Kearney, Omar Suleman (ABB Corporate Research, Switzerland), Justin Griffin (Aerogel Technologies, USA)

IHTC15-9178/TMG-K-516

Experimental and Theoretical Study of Steady Non-Fourier Heat Conduction in Free-Standing Gold Nanofilm

Hai-Dong Wang (Kyushu University), Xing Zhang, Zeng-Yuan Guo (Tsinghua University, China)

Session 52 (K) [12:50 - 14:50]

Co-Chairs : Isao Satoh & Jessica Shi

IHTC15-8553/TMG-K-521

Effect of Electrode Configuration on the Heat Transfer Performance of a Concentrated Heat Source

Chien-Jen Chen, Ing Youn Chen (National Yunlin University of Science and Technology, Taiwan), Chi-Chuan Wang (National Chiao Tung University, Taiwan)

IHTC15-8807/TMG-K-522

Thermal Contact Resistance of Gamma-Irradiated Metallic Foil and Carbon Nanotube Thermal Interface Materials

Robert A. Sayer (Sandia National Laboratories, USA), Stephen L. Hodson (Purdue University, USA), Timothy P. Koehler, Scot E. Swanson (Sandia National Laboratories, USA), Timothy S. Fisher (Purdue University, USA)

IHTC15-8824/TMG-K-523

Experimental Investigation of Thermal Performance of Phase Change Material Based Composite Heat Sink with Discrete Heat Sources Srikanth Rangarajan, Chakravarthy Balaji (IIT MADRAS, India)

IHTC15-9032/TMG-K-524

Study on Heat Transfer Characteristics of Miniature/Micro Pins Naoko Matsumoto, Toshio Tomimura, Yasushi Koito (Kumamoto University, Japan)

IHTC15-9071/TMG-K-525

Analysis of Space Environmental and ISS Parameters on the Thermal Behavior of AMS Zheng Cui, Kun Wang, Naihua Wang, Jiwei Song, Qie Sun, Lin Cheng (Shandong University, China)

IHTC15-9461/TMG-K-526

Characterization of Valveless Piezoelectrically-Actuated Micropumps with Novel Diffuser Elements

Leicester Ehrlich, Jeff Punch (University of Limerick, Ireland), Nicholas Jeffers, Jason Stafford (Alcatel-Lucent, Ireland)

15th, Friday

Session 53 (K) [15:10 - 16:50]

TMG3 | Thermal Management (3)

Co-Chairs : Kenichi Morimoto & Robert Sayer

IHTC15-8886/TMG-K-531

Solar PV Passive Temperature Control Using Phase Change Materials Dominic Groulx (Dalhousie University, Canada), Pascal Henry Biwole (Université de Nice Sophia-Antipolis, France)

IHTC15-9200/TMG-K-532

Photonic Structures Based Thermal Rectification: Toward Tunable Radiative Thermal Rectifiers

Elyes Nefzaoui, Younes Ezzahri, Karl Joulain, Jeremie Drevillon (Institut Pprime, France)

IHTC15-9251/TMG-K-533

The Design & Characterization of a Miniature Shape Memory Alloy Valve for Passive Thermal Management

Alistair Waddell, Jeff Punch (University of Limerick, Ireland), Jason Stafford, Nick Jeffers (Alcatel-Lucent Bell Labs, Ireland)

IHTC15-8913/TMG-K-534

Numerical Investigation of Thermal Management for Kilowatt Vanadium Redox Flow Batteries

Baowen Zhang, Yuan Lei, Bofeng Bai (Xi'an Jiaotong University, China), Tianshou Zhao (The Hong Kong University of Science & Technology, China)

IHTC15-9311/TMG-K-535

An Entransy Dissipation-Based Method for Optimal Control of Variable Water Volume Heat Exchanger Networks Qun Chen, Yi-Fei Wang (Tsinghua University, China)

11th, Monday

Session 11 (13:30 - 15:30)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	EVP1 : Evaporation, Droplet/ Spray/Liquid Film (1)	TPA : Two-Phase, Application	FCV1 : Forced Convection (1)	TTR1 : Turbulent Ttransport (1)		BMA1 : Bio and Medical Applications (1) B. Chen & V. Vamada
13:30	8581/EVP-B1-111 Vapor Flow Effect on Falling Film Evaporation of R134a Outside Horizontal Tube Bundle, W. Ji, C. Zhao, Y. He, G. Xi, W. Tao	910/TPA-B2-111 Experimental Investigation on a Closed Loop Pulsating Heat Pipe in Hyper-Gravity Conditions, M. Mameli, M. Manzoni, L. Araneo, S. Filippeschi, M. Marengo	R. Hitata & P. H. Oostituizen	 S. Kelljeles & M. Selida <u>8762/TTR-C2-111</u> Dynamic and Thermal Characteristics of the Mixing of Two Separated Flows with Different Scales, A. D'yachenko, V. Terekhov, Y. Smulsky, N. Yarygina 	IHTC Since 1951	8489/BMA-E-111 A Study on the Temperature Profile and Thermal Damage in Human Skin Tissue, I. Im, S. Youn, D. Ko
13:50	9374/EVP-B1-112 Effect of Initial Temperature of a Hot Steel Plate on Thermal Performance of Impinging Jets during Quenching Processes, T. Kim, K. Do, D. Oh, J. Lee, J. Park	9899/TPA-B2-112 Effects of Filling Ratio and Input Heat Flux on the Thermal Performance and Flow Pattern of a Pulsating Heat Pipe, J. Lee, S. Kim	8781/FCV-C1-112 Nonlinear Characteristics of Periodically Fully Developed Flow in Cross-Flow Tube Bundle, Q. Yong, M. Yang, Z. Wang, J. Chen, D. Su, Y. Zhang	9325/TTR-C2-112 Effects of a Stepwise Change in Thermal Boundary Conditions on Heat Transfer Characteristics in a Turbulent Boundary Layer Developing on a Flat Plate, T. Houra, Y. Nagano, M. Tagawa		9884/BMA-E-112 Estimation of Blood Perfusion Rate and Its Temperature Dependency in Human Abdominal Area under Heating Condition, J. Okajima, T. Okabe, T. Sugiura, A. Komiya, T. Seki, S. Maruyama
1410	9732/EVP-B1-113 Influence of Dynamic Wettability on Evaporation Kinetics of Microscopic Sessile Droplets, R. Raj, E. N. Wang	<u>9281/TPA-B2-113</u> Measurement of Kinetic and Enthalpy of Chemical Reaction in Biphasic Millifluidic Droplet Flow by InfraRed Thermography, R. Marta, P. Christophe, T. Jean, H. Cindy, B.J. Christophe	9307/FCV-C1-113 Hybrid Solution for Convection Heat Transfer of Swirling Flows in Cylindrical Cavity with Rotating Top, C.C.S. Cruz, L.M. Pereira, E. Macêdo, J.N.N. Quaresma	9647/TTR-C2-113 Control of Momentum and Heat Transport in a Heated Axisymmetric Jet by Means of Vortex Generators, K. Miura, K. Nagata, Y. Sakai, O. Terashima, Y. Ito		9715/BMA-E-113 Tumor Ablation with Near-Infrared Radiation Using Localized Injection of Nanoparticles, A. Paul, N.K. Bandaru, A. Narasimhan, S.K. Das
14:30	9961/EVP-B1-114 The Effect of Humidity in Ambient Gas on HTWs in Volatile Drops, Y. Fukatani, M. Kohno, Y. Takata, K. Sefiane, J. Kim	9228/TPA-B2-114 Geometric Structure of Segmented Flow Networks, J. Stafford, N. Jeffers	9702/FCV-C1-114 Heat Transfer on Sharp and Blunted Flat Plate at Three-Dimensional Shock-Wave /Boundary-Layer Interaction, V. Borovoy, I. Egorov, N. Palchekovskaya	10000/TTR-C2-114 Verification and Validation of Three Different CFD Codes in Simulating Mixed Convection Flows Using Two Advanced Eddy-Viscosity Models, A. Keshmiri		8772/BMA-E-114 State Estimation Problem in Hyperthermia Treatment of Tumors Loaded with Nanoparticles, B. Lamien, H.R.B. Orlande, G.E. Eliçabe, A.J. Maurente
14:50	9504/EVP-B1-115 Drop Spreading and Evaporation on a Heated Substrate under Variable Gravity Conditions, O. Kabov, D. Zaitsev, E. Gatapova, A. Semenov, E. Bykovskaya, E. Karnauhova, V. Ajaev, D. Feoktistov, G. Kuznetsov	9893/TPA-B2-115 Analytical Investigation of Oblique Shock Waves in Two-Phase Flow with Different Sound Speeds, Y. Kawamura, M. Nakagawa	<u>9252/FCV-C1-115</u> Numerical Study of Critical Fire Merging Distances in Square Arrayed Multiple Fires, K. Satoh, N. Liu, X. Xie, W. Gao	8699/TTR-C2-115 Effect of Shark Skin Textures on Entropy Generation for Turbulent Channel Flow and Heat Transfer Problems, Y. Jin, H. Herwig		9350/BMA-E-115 3-D Investigation of Thermal-structure Analysis in a Kidney during Cold Perfusion, K. Zhu, Y. Wang, F. Liang, Y. Zhang
15:10	9523/EVP-B1-116 Heat Transfer and Interaction of Suspended Droplets and Locally Heated Liquid Layer, O. Kabov, A. Fedorets, I. Marchuk			9892/TTR-C2-116 Drag Reduction of Thermally Stratified Flow in a Horizontal Pipe, K. Kobayashi, S. Nakajima, Y. Kimura		<u>9624/BMA-E-116</u> Colloidal Magnetic Clusters for Hyperthermia Heating, R. Fu, Y. Yan

Session 11 (13:30 - 15:30)

11th, Monday

	Room F	Room G	Room H	Room I	Room J	Room K
	MTR1 : Mass Transfer and	PPE : Photon, Phonon and	MLT : Molecular Transport	TPP1 : Thermophysical	CDS1 : Condensation (1)	EES1 : Energy Environmental
	Drying (1) M. Ouintard & K. Takeishi	Electron Transport	Y Chen & T Obara	Properties (1)		Systems (1)
13:30	8582/MTR-F-111 Surface	8551/PPE-G-111 The Effect of	8513/MLT-H-111 Molecular	8453/TPP-I-111 Method for	8481/CDS-J-111 A Literature	8948/EES-K-111 Heat Recovery in
	Tension-Driven Flows within Drying	Distributions of Nanoparticles on	Dynamics Study on Influences of	Predicting Spatial Distribution of	Overview on Condensation Heat	Difficult "Polluted Flue Gas
	Paint Films,	Thermal Conductivity of	Surface Structural Characteristics	Formation Thermophysical	Transfer of Ammonia on the	Applications" in Waste to Energy
	N. Saranjam, S. Chandra, J.	Nanocomposites,	on Thermal Energy Transport over	Properties from Temperature Logs,	Outside of Tubes,	Systems,
	Nostagnimi, H. Fan, J. Simmer	J. Zhang, B. Shi, Y. Xuan	Liquid-Solid Interfaces, M. Shibabara, P. Toda, S.	VV. Cheng, Y. Nian, Y. Huang, C.	K. Spindler	P. Stenlik, V. Turek, Z. Jegia, B. Kilkovsky
			Murakami, T. Ohara			Nikovsky
13:50	9024/MTR-F-112 Application of	8641/PPE-G-112 Circuits for	9055/MLT-H-112 Molecular	9572/TPP-I-112 Analysis of	10516/CDS-J-112 Versatile	8662/EES-K-112 Investigation on
	Entransy in Match Property of	Thermal Light,	Dynamics Investigation on the	Improved Lumped Models for	Models for Condensation of Fluids	the Process of CO_2 Diffusion and
	Liquid Desiccant Dehumidification,	P. Ben-Abdallah SA. Biehs	Wetting Process of Liquid Droplet	Estimating the Thermal	with Widely Varying Properties	Mass Transfer in Oil-Saturated
	L. Zhang, X. Liu, Y. Jiang		on a Solid Surface,	Conductivity Augmentation in	from the Micro to Macroscale,	Porous Media Using MRI,
			Y Yamaguchi K Kuroda M	D Moreira M.C. Telles I.C.	S. Garimelia, B.Ivi. Fronk, J.A. Milkie B.L. Keinath	r. Zhao, r. Song, w. Hao
			Kagawa, T. Nakajima, H. Fujimura	Nunes, L. Sphaier	Winde, B.E. Ronau	
14:10	8746/MTR-F-113 MRI	9038/PPE-G-113 A New	8514/MLT-H-113 Photon	8568/ TPP-I-113 Modeling Thermal	9112/CDS-J-113 A New	9294/EES-K-113 Effect of
	Measurement and Numerical	Theoretical Model of Selectively	Upconversion Based on	Conductivity of Natural Rubber with	Condensation Heat Transfer Model	Boundary Conditions and
	Modeling of Moisture Transport in	Photothermolysis to Aid Laser	Inter-Molecular Energy Transfer in	Carbon Black,	Based on the Flow Regime in a	Ventilator Size on the Natural
	Microwave Vacuum Drying of	Ireatment of Poor Responding	Ionic Liquids: A Technology for	J. Song, L. Ma, Y. He, W. Li, S. Yao	Nearly Horizontal Pipe,	Convection in a Naturally
	T Tsuruta H Tanigawa	D Li B Chen G Wang W Wu Y	Otilizing Sub-Bandgap Wasted		LANN, J. Jeong, K. Kang, J. Cheon B. Yun	S Kruger I Pretorius
	1. Isulua, H. Tangawa	He	Y. Murakami, A. Kawai		oncon, b. run	O. Mugel, E. Freionus
14:30	8875/MTR-F-114 Investigation of	9156/PPE-G-114 Thermal	9635/MLT-H-114 Heat Transferred	8626/TPP-I-114 The Effect of	9536/CDS-J-114 Numerical	9011/EES-K-114 Multi-Scale
	Heat Transfer within an Array of	Conductivity Calculation of	from Cold to Hot in Near-Critical	Porous Media Properties on	Simulation of Heat and Mass	Modeling and Approximation
	Impinging Jets with Local	Magnesium Silicide Alloys by	Fluids under Low Gravity,	Effective Thermal Conductivity of	Transfer Processes in Air-Cooled	Assisted Optimization of Bare Tube
	P Cavadini P Scharfer W	Dynamics Methods	G. Hu, H. Wang, Z. Guo	First Prediction of Existing Prediction	V Artemov K Minko G Vankov	D Bacellar I Ling V Aute R
	Schabel	T. Shiga, T. Murakami, T. Hori, K.		Correlations, L. Yang, J. Zhao, Y.	V. Alternov, R. Winko, C. Tankov	Radermacher, O. Abdelaziz
		Esfarjani, J. Shiomi		Song, W. Liu, Y. Liu, Y. Zhang, D.		
		-		Wang, M. Yang, J. Wang		
14:50		9064/PPE-G-115 In-Plane Thermal	9499/MLT-H-115 A Coupling	8646/TPP-I-115 Intriguingly High	9958/CDS-J-115 A Numerical	9639/EES-K-115 Heat Balance of
		Conductivity of SI Thin Films from	Scheme of Lattice Boltzmann	Inermal Conductivity	Study of Condensation on	Anti-Season Ice Cave,
		X. Wang, B. Huang	for Multi-Component Diffusion	Nanoplatelets Contained Poly	S. Natesh. V. Naravanan, S.	X. Wang, K. Tan, Y. Liang, J. Tan
		, a trailig, <u>-</u> t taalig	Processes,	(Methyl Methacrylate) Composites,	Bhavnani	
			Z. Tong, Y. He, W. Yang, W. Tao	W. Yu, H. Xie, X. Zhou, Y. Li, L.		
				Chen		
15:10				8688/TPP-I-116 Characterization	<u>9361/CDS-J-116</u> Drag	8280/EES-K-116 Energy-Based
				Nanotube Yarns	Condensation Heat Transfer in an	Parameters for Coupled Biochar
				J. Wang, S. He, J. Bao, X. Zhang.	Inclined Microfin Tube,	and Syngas Production in Stratified
				J. Yang, Y. Chen	A.O. Adelaja, J. Dirker, J.P. Meyer	Downdraft Gasifiers,
						G. Allesina, S. Pedrazzi, E. La
						Cava, M. Orlandi, M. Hanuskova, C. Fontanesi, P. Tartarini

11th, Monday

Session 12 (16:00 - 18:00)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	EVP2 : Evaporation, Droplet/ Spray/Liquid Film (2) O. A. Kaboy & M. Monde	TPB : Two-Phase, Boiling/Condensation S. J. Kim & Y. Utaka	FCV2 : Forced Convection (2) Z. Kawara & M. S. Kim	TTR2 : Turbulent Transport (2) A. Keshmiri & M. Tagawa		MNF : Manufacturing T. Saito & Y. Xuan
16:00	8367/EVP-B1-121 Spray Cooling by Gently-Deposited Droplets: Experiments and Modeling of Heat-Transfer Mechanisms, P.E. Santangelo, M.A. Corticelli, P. Tartarini	8958/TPB-B2-121 Flow Boiling Heat Transfer in Small Cross Section Area Tube with R134a and R32, F. Ramirez-Rivera, F. Vera-García, J.R. García-Cascales, F. Illán-Gómez	9135/FCV-C1-121 Simultaneous Thermal and Flow Measurements in a Boundary Layer by Using High-speed Infrared Thermograph and PIV Combined System, S. Yamada, H. Nakamura	8909/TTR-C2-121 Effects of System Rotation on Transitional Boundary Layer, O. lida, K. Noto	IHTC Since 1951	8586/MNF-E-121 Mass Spectroscopy of Intermediate Products Involved in Chemical Vapor Deposition Synthesis of Carbon Nanotube, S. Inoue, D. Nakahara, Y. Oga, Y. Matsumura
16:20	8936/EVP-B1-122 Modelling of Biodiesel and Diesel Fuel Droplet Heating and Evaporation, S.S. Sazhin, M. Al Qubeissi, M.R. Heikal	8598/TPB-B2-122 Nucleation Site Interactions in Upward Flow Boiling Experiments, C. Baltis, C.W.M. van der Geld	8497/FCV-C1-122 Laminar, Transitional, and Turbulent Mixed Convective Heat Transfer from a Thin Inclined Plate Having a Uniform Surface Heat Flux, P.H. Oosthuizen	<u>9516/TTR-C2-122</u> Concurrent Large-Eddy Simulation of Wall-Jet Heat Transfer Enhanced by Systematically- Deformed Turbulence Promoter, Y. Oda, K. Takeishi		9843/MNF-E-122 Development of an in-Plane Thermal Diffusivity Measurement Method with a Lock-in Thermography and Application to High Thermal Conductive CFRPs, T. Ishizaki, H. Nagano
16:40	<u>9287/EVP-B1-123</u> Comparative Study of the Cooling of a Hot Temperature Surface Using Sprays and Liquid Jet, A. Labergue, T. Aiguier, M. Gradeck, F. Lemoine	8790/TPB-B2-123 Numerical Investigation of Taylor-Bubble Characteristics during Flow Boiling in a Square Minichannel, A. Pattamatta, M. Freystein, J. Dietl, P. Stephan	8755/FCV-C1-123 Three- Dimensional Turbulent Convection inside a Parallelepiped with Two Heated Vertical Walls, V.I. Terekhov, A.L. Ekaid	9676/TTR-C2-123 Operation of Functional Fluid by Local Wall Heating in a Drag-Reducing Surfactant Solution Flow, S. Hara, S. Kawada, T. Tsukahara, Y. Kawaguchi		8623/MNF-E-123 High Thermal Conductive Graphite Films from Thin Polymer Films, A. Tatami, M. Tachibana, T. Yagi, M. Akoshima, M. Murakami
17:00	9581/EVP-B1-124 An Experimental Study of the Leidenfrost Transition for Water on Nanostructured Superhydrophilic Surfaces, J. Padilla, V. Carey	8999/TPB-B2-124 Experimental Investigation of Hydrodynamics and Flow Boiling Heat Transfer in Minichannels at High Reduced Pressure, A. Belyaev, A.V. Dedov, A.N. Varava, A.T. Komov	9377/FCV-C1-124 Entrainment Process in the Vicinity of Pool Fire under Ventilation Condition, Y. Hattori, K. Matsuyama, H. Suto, E. Onuma, S. Okinaga	<u>9788/TTR-C2-124</u> Direct Numerical Simulation on the Effects of Amplitude and Hydrophilicity of Wavy Wall on Turbulent Heat Transfer and Drag, R. Akaiwa, A. Nishida, Y. Hagiwara		9223/MNF-E-124 Experimental Investigation of the Work Piece Temperatures in Dry Orthogonal Metal Turning, M. Deppermann, H. Puls, M. Burghold, R. Kneer, F. Klocke
17:20	9140/EVP-B1-125 Visual Observation of Liquid-Solid Contact Situations on Superheated Surface Cooled by Liquid Jet or Spraying, N. Nagai, H. Onishi, H. Nikaido, Y. Serizawa	8956/TPB-B2-125 Flow Pressure Drop of R1234yf and R134a in a Mini-Channel Multiport Tube, F. Vera-García, A. Lopez-Belchí, F. Ramírez-Rivera, J.R. García-Cascales, F. Illán-Gómez	8962/FCV-C1-125 Experimental Research of Adiabatic Wall Temperature Influenced by Separated Supersonic Flow, S. Popovich, K. Egorov, U. Vinogradov	9552/TTR-C2-125 Impinging Jet Passive Control for Wall Shear Stress Enhancement, K. Sodjavi, B. Montagné, F. Bode, M. Kristiawan, I. Nastase, A. Meslem		9077/MNF-E-125 Four- Dimensional Flow Measurements of UV Curable Resin at a Thermally-Assisted Nanoimprint Process, M. Asano, N. Unno, S. Satake, J. Taniguchi
17:40	9419/EVP-B1-126 Effect of Marangoni Flow on the Evaporation Rate of Sessile Droplets, D. Hu, H. Wu, Z. Liu			8416/TTR-C2-126 Multi-scale Second Moment Modelling of Turbulence and Heat Transfer in Porous Media, Y. Kuwata, Y. Sakurai, K. Suga .		

Session 12 (16:00 - 18:00)

11th, Monday

	Room F	Room G	Room H	Room I	Room J	Room K
	MTR2 : Mass Transfer and Drying (2) G. Rosengarten & T. Tsukada	HEX1 : Heat Exchanger (1) J. Jeong & R. Matsumoto	FCL : Fuel Cell A. Fly & S. Tsushima	TPP2 : Thermophysical Properties (2) K. Miyazaki & C. Pradere	CDS2 : Condensation (2) A. Miyara & V. Narayanan	EES2 : Energy Environmental Systems (2) G. Allesina & C. Dang
16:00	9089/MTR-F-121 Direct Numerical Simulation Modeling of Multidisciplinary Transport during Li-Ion Battery Charge/Discharge Processes, F. Jiang, J. Zeng, W. Wu, P. Peng	8816/HEX-G-121 Numerical Simulation of Complicated Chevron Plates Passages, H. Luan, W. Tao, G. Zhu, B. Chen, S. Wang	9494/FCL-H-121 Optimization of Oxygen and Proton Transfer in Heterogeneous PEFC Catalyst Layer by Controlling Local Carbon Black Aggregate Structure, G. Inoue, S. Baba	8806/TPP-I-121 Measurement of Temperature Distribution for the Hydrate Formation and Dissociation in Porous Media, M. Yang, Y. Song, L. Jiang, S. Wang, Y. Zhao, J. Zhao	<u>9363/CDS-J-121</u> Experimental Investigation on Pressure Drop and Friction Factor in Tubes at Different Inclination Angles during the Condensation of R134a, A.O. Adelaja, D.R.E. Ewim, J. Dirker, J.P. Meyer	9567/EES-K-121 Analysis of Thermo-Hydraulic Couplings in a Heat Pump Water Heating System, G. Segond, S. Launay, L. Tadrist
16:20	<u>9185/MTR-F-122</u> Effect of Velocity and Evaporation on Non- Isothermal Meniscus in a Capillary, A. Voirand, A. Benselama, Y. Bertin	8647/HEX-G-122 Investigation of the Flow Distribution for Supercritical Carbon Dioxide Fluid in a Plate Heat Exchanger, Y. Tang, C. Chu, Y. Lin, R. Sian, C. Wang	9267/FCL-H-122 Measurements of the Temperature Distribution of a PEMFC Catalyst Layer Using an Ultra Thin Thermocouple Array, T. Araki, T. Sugimoto	<u>9395/TPP-I-122</u> Experimental Measurement on Spectral Properties of Quartz at High Temperature, S. Zhang, Q. Ai, X. Xia	8645/CDS-J-122 A New Flow Pattern Based General Correlation for Heat Transfer during Condensation in Horizontal Tubes, M. Shah	9058/EES-K-122 PIV Measurement of Heat Transfer Deterioration Phenomena, H. Nakaharai, A. Yamada, R. Shigenaga
16:40	<u>9351/MTR-F-123</u> Effect of Module Inclination Angle on Air Gap Membrane Distillation, D.E.M. Warsinger, J. Swaminathan, J.H. Lienhard V	9411/HEX-G-123 A Computer Model for Simulation of Drying and Preheating of Wet Iron ore in a Rotary Kiln, A. Agrawal, P. Ghoshdastidar	9176/FCL-H-123 Study on the Effect of Micro Porous Layer on Water Transport Phenomena in PEFC by Using Neutron Radiography, H. Murakawa, K. Sugimoto, N. Kitamura, H. Asano, N. Takenaka, Y. Saito	9451/TPP-I-123 Raman Spectra Method for Determining Viscosity of Supercritical Fluids, Q. Li, X. Zhang	8873/CDS-J-123 Steam Flow Condensation in Semi-Circular and Square Mini-Channels M. Derby, Y. Peles, M.K. Jensen	8895/EES-K-123 The Impact of Thermal Engineering Research on Global Climate Change, P. Phelan, O. Abdelaziz, T. Otanicar, B. Phelan, R. Prasher, R. Taylor, H. Tyagi
17:00	9151/MTR-F-124 Experimental Investigation of Interfacial Temperature Evolution during Evaporation of Sessile Droplet, M. Still, T. Gambaryan-Roisman, P. Stephan	8503/HEX-G-124 Effect of Sand Fouling on Compact Fin Heat Exchangers, S. Obadina, J. Fody, S. Dessiatoun, M. Ohadi, A. Shooshtari	9587/FCL-H-124 Effect of Heat and Mass Transfer and Electrochemistry on Performance in Solid Oxide Fuel Cell Stacks, R. Nishida, S. Beale, J. Pharoah	8213/TPP-I-124 Reconstruction of Thermal Boundary Resistance and Intrinsic Thermal Conductivity of SiO ₂ -GaN-Sapphire Structure and Temperature Dependence, Z. Wang, Y. Ma, G. Yao, X. Tian, D. Tang	10018/CDS-J-124 Condensation in Mini and Microchannels: Effect of Diameter, Shape, Inclination and Fluid Properties, S. Bortolin, D. Del Col	9246/EES-K-124 CFD Study of Non-Guided Laminar Mixed Convection of a High Prandtl Number Fluid in a Transformer Winding-Like Geometry, T. Laneryd, J. Kraneborg, Y. Jiao, A. Gustafsson
17:20		9412/HEX-G-125 Thermal Performance and Characteristics of Spiral-Tube Ground Heat Exchanger for Ground-Source Heat Pump, J. Haddada, A. Miyara	9440/FCL-H-125 Towards the Microstructural Optimisation of Solid Oxide Fuel Cell Electrodes, M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N. Brandon	9128/TPP-I-125 Development of a Thermal Measurement Technique for Detection of Localized Filler Distribution within a Polymer Composite, D. Oh, J. Park, O. Kim, S. Park	10015/CDS-J-125 Condensation Heat Transfer of a Non-Azeotropic Mixture in a Single Minichannel, D. Del Col, M. Azzolin, S. Bortolin, C. Zilio	9019/EES-K-125 A Study on the Prediction of Solar Insolation and Its Effects on Building Heating Load, S. Yoo, T. Kim, K. Han
17:40		9149/HEX-G-126 Comparison between the Thermal Performance of Single and Two-Layer Microchannels Inserted with Micro Pin Fins, O.O Adewumi, T. Bello-Ochende, J.P. Meyer	9078/FCL-H-126 Flow Distribution Uniformity Evaluation in kW-Range Direct Methanol Fuel Cell Stack, Y. Nakano, Y. Morimatsu, Z. Guo, M. Ohashi, M. Mochizuki		9033/CDS-J-126 Condensation Heat Transfer Characteristics on A Micro-Structured Surface with Wettability Gradient, A. Tokunaga, M. Mizutani, G. Nagayama, T. Tsuruta	9883/EES-K-126 Domestic Passive Ventilation with Heat Recovery (PVHR): Performance Criteria, Tests and Operational Variations, T. Lipinski, S. Lee, P. RN Childs

12th, Tuesday

Session 21 (09:40 - 11:40)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	EVP3 : Evaporation, Droplet/ Spray/Liquid Film (3) V. Carey & H. Ohtake	SOL1 : Solar Energy (1) Y. Murakami & E. Wang	MIN1 : Measurement and Instrumentation (1) N. Ninomiya & B. Remy	NMS : NEMS/MEMS A. Ueno & C. Yang	ADS : Adsorption and Desorption S. Koyama & Z. X. Yuan	INV : Inverse Problems A. Komiya & Y. Mitsutake
09:40	8637/EVP-B1-211 Heat Transfer Characterization during Transient Boiling, N. Baudin, C. Colin, P. Ruyer, J. Sebilleau	8410/SOL-B2-211 Design and Analysis of a Rooftop Solar Furnace, R. Taylor, M. Yang, A. Bandara, K. Morrison, A. Ashraf, E. Hawkes	8678/MIN-C1-211 An Investigation of Wall Temperature Characteristics to Improve the Evaluation Method for Thermal Fatigue at a T-Junction Pipe, K. Miyoshi, A. Nakamura, N. Takenaka	8752/NMS-C2-211 Development of a Mini-Channel Gas Separator Utilizing Soret Effect, N. Ono, T. Wako, T. Higurashi, S. Matsumoto	9289/ADS-D-211 Design and Performance Analysis of an Advanced Thermal Battery for Electric Vehicle Climate Control, S. Narayanan, X. Li, S. Yang, I. McKay, H. Kim, E. Wang	9796/INV-E-211 Parameter Estimation Using Heat Transfer Models with Experimental Data Using a Combined Ann-Bayesian Approach, N. Gnanasekaran, Nithin, C. Balaji
10:00	8766/EVP-B1-212 Propagation Dynamics of Self-Sustained Evaporation Front and Characteristics of Small-Scale Perturbations at the Interface, V. Zhukov, A. Pavlenko, M. Moiseev, D. Kuznetsov	8072/SOL-B2-212 Development of Concentrating System of Dye-Sensitized Solar Cell with a Heat Exchanger, Y. Kim, Y. Kim, S. Park	8703/MIN-C1-212 High Speed Observation and Measurement of Surface Temperature and Surface Heat Flux during Impact of a Droplet on Hot Surface, S. Illias, M. Nasim Hasan, Y. Mitsutake, M. Monde	9313/NMS-C2-212 Fabrication and Visualization of a Micro Pulsating Heat Pipe, K. Yang, Y. Cheng, M. Jeng, K. Chien, J. Shyu	8866/ADS-D-212 Effects of the Induced Charge on CO ₂ Adsorption in Cu-BTC at Different Temperature: A Combined Experimental and Molecular Simulation Study, H. Wang, Z. Qu, W. Zhang, W. Tao	9577/INV-E-212 Recovering the Front Surface Temperature of Metallic and Composite Targets Subject to Localized Heating via Inverse Heat Transfer Modeling, Y. Zhang, J. Chen, Z. Feng
10:20	8439/EVP-B1-213 Experimental Study of Pulsed and Steady State Confined Subcooled Jet Impingement Boiling, S. Abishek, R. Narayanaswamy, V. Narayanan	<u>9580/SOL-B2-213</u> Analysis of Regenerative Thermal Storage Geometries for Solar Gas Turbines, P. Klein, T. Roos, J. Sheer	8290/MIN-C1-213 New Methodology and Apparatus for the Thermal Characterization of Semi-Crystalline Thermoplastics in Extreme Conditions, B. Pignon, X. Tardif, V. Sobotka, N. Boyard, D. Delaunay	9625/NMS-C2-213 The Influence of Surface Electric Charge on Water Freezing, J. Zhou, X. Zhang, M. Chen	9555/ADS-D-213 Theoretical and Experimental Studies on Characteristics of Adsorption Performance of Desiccant Rotor Applied to Desiccant Heat Pump, S. Feng, N. Nakagawa, T. Koyano, C. Dang, E. Hihara	9764/INV-E-213 Research and Development of Heat Flux Sensor for Thermokinetic Processes, O. Alifanov, S. Budnik, A. Nenarokomov, A. Netelev
10:40	8347 EVP-B1-214 Flow inside Evaporating Water Sessile Drop: A Numerical Study, C. Bouchenna, M. Ait Saada, S. Chikh, L. Tadrist	<u>9162/SOL-B2-214</u> Mathematical Modeling of Radiative Heat Transfer Process in High- Temperature Solar Power Plant, V. Leonov, A. Bannikov, I. Zharenov	<u>8749/MIN-C1-214</u> The Freestanding Sensor-Based 3ω Technique for Thermophysical Properties Characterization, L. Qiu, X. Zheng, P. Yue, M. Liu, D. Tang	<u>9130/NMS-C2-214</u> Effect of Wall Structures on Nano-Channel Flows, H. Yasuoka, T. Imae, M. Kaneda, K. Suga	9051/ADS-D-214 Inclusion of Non-Isothermal Effects in Modeling Electrochemical Kinetics of Contaminated PEM Fuel Cell Electrodes, S. Hasmady, K. Fushinobu	9532/INV-E-214 A Non-Intrusive Inverse Problem Technique for the Identification of Contact Failures in Double-Layered Composites, L. Abreu, C. Alves, M. Colaco, H.R.B. Orlande
11:00	8693 EVP-B1-215 Heat Transfer and Crisis Phenomena Development at Boiling and Evaporation in Falling Liquid Film at Stepwise Heat Generation, A. Pavlenko, A. Surtaev, I. Starodubtseva	8054/SOL-B2-215 Hybrid Device for CPV Power Generation and Heating, D. Lee, S. Baek	8725/MIN-C1-215 Method to Analyze the Spatial Current Distribution in an Operating PEFC Based on NMR Measurement Using Small Planar Surface Coils, K. Ogawa, Y. Yokouchi, T. Haishi, K. Ito	9508/NMS-C2-215 Enhanced Flow Boiling Heat Transfer in Microchannels with Structured Surfaces, Y. Zhu, D. Antao, K. Chu, T. Hendricks, E. Wang	9392/ADS-D-215 A Measurement Method of Adsorption/Desorption Rate Controlled by Adsorbent Temperature in Moist Air of Atmospheric Pressure, T. Ouchi, Y. Hamamoto, H. Mori	9473/INV-E-215 Retrieval of Geometric Structure of Internal Defect in Two-Dimensional Semi-Transparent Media under Laser Irradiation Using the RDS-PSO, H. Qi, Z. He, T. Jia, B. Zhang, L. Ruan
11:20	8652/EVP-B1-216 Capillary and Thermal Performance of Advanced Multi-Height Micropost Evaporator Wicks, S. Ryu, W. Lee, Y. Nam	8611/SOL-B2-216 Design and Analysis of a Low-Profile, Concentrating Solar Thermal Collector, Q. Li, C. Zheng, X. Gu, A. Woffenden, G. Rosengarten, E. Hawkes, M. Yang, R. Taylor	<u>9775/MIN-C1-216</u> Study of Thermal Characteristics of Power Mosfet Package under Body-Diode and Saturate Test Conditions, Y. Luo, Y. Kajita, T. Hatakeyama, S. Nakagawa, M. Ishizuka		<u>9623/ADS-D-216</u> Molecular Simulation of CO ₂ Sorption on Mesoporous Material Fillled with Polyethylenimine, J. Li, W. Wang, J. Ding	<u>9190/INV-E-216</u> Estimation of the Heat Transfered to a Fluid in a Minichannel by an Inverse Technique, W. Al Hadad, Y. Rouizi, Y. Jannot, B. Rémy, D. Maillet

Session 21 (09:40 - 11:40)

12th, Tuesday

	Room F	Room G	Room H	Room I	Room J	Room K
	FCV3 : Forced Convention (3) T. Houra & X. R. Zhang	HEX2 : Heat Exchanger (2) K. Inaoka & G. Ziskind	EEC1 : Electronic Equipment Cooling (1) M. Baelmans & S. Nakagawa	TPP3 : Thermophysical Properties (3) S. Kabelac & Y. Takata	CDS3 : Condensation (3) Y. Abe & X. Ma	ECS : Energy Conversion and Storage Y. Okumura & Y. Wei
09:40	8965/FCV-F-211 Experimental Investigation of the Heat Transfer Process at a Gas-Dynamic Method of Energy Separation, A. Zditovets, U. Vinogradov, A. Titov	8536/HEX-G-211 Flow and Thermal Performance of Graphite Foam Dimpled Fin Heat Exchangers, W. Lin, G. Xie, B. Sunden, Q. Wang	8910/EEC-H-211 Transient Thermal Behavior of the Micro-processor System - Investigation of Effects by Distributed Thermal Capacitance and Thermal Spreading Resistances, K. Nishi, T. Hatakeyama, S. Nakagawa, M. Ishizuka	9050/TPP-I-211 Tailoring Radiative Property of Two-Dimensional Complex Grating Structures, S. Han, B. Lee	9602/CDS-J-211 In-tube Condensation of Low GWP Mixture Refrigerants R1234ze(E)/R32, A. Miyara, H.M.M. Afroz, MD.A. Hossain	9174/ECS-K-211 Study on the Improvement of the Performance of a Novel Adsorption Heat Pump System for Generating High-temperature Steam, K. Nakaso, S. Kobayashi, S. Eshima, J. Fukai
10:00	9225/FCV-F-212 Heat Transfer and Pressure Drop Characteristics in the Annuli of Tube-in-Tube Heat Exchangers (Horizontal Lay-Out), F.P.A Prinsloo, J. Dirker, J.P. Meyer	9007/HEX-G-212 Entropy Generation Minimization Analysis of Passive and Active Magnetocaloric Regenerators, P. Trevizoli, D. Alcalde, J. Barbosa	8951/EEC-H-212 An 1-D Model for Species Crossover through the Membrane in All-Vanadium Redox Flow Batteries, Y. Lei, B. Zhang, B. Bai, T. Zhao	9505/TPP-I-212 Molecular Simulation of Water Sorption and Diffusion Characterizaton in Cation-Exchanged ZSM-5, H. Chen, J. Ding, W. Wang, X. Wei, J. Lu	9758/CDS-J-212 Condensation Heat Transfer of R-410A and R-22 in U-Tubes, L. Chien, C. Liu	9820/ECS-K-212 Benchmark Numerical Simulations of Solar Thermoelectric Generators, S. Lei, R. Frizzell, R. Enright
10:20	9107/FCV-F-213 Gas-Dynamic Temperature Stratification in a Compressible Low-Prandtle Gas Flow on a Permeable Wall, M. Makarov, V. Naumkin	8908/HEX-G-213 Heat Transfer and Pressure Drop Performance of Offset Strip Fin with Gap between Adjacent Rows, S. Hwang, J. Jeong, J. Jeong	8327/EEC-H-213 A Miniature Multiple Vibrating-Fan Cooling System Using Magnetic Force and Piezoelectric Force, H. Su, C. Liu	9220/TPP-I-213 Diffusion of Carbon Dioxide in Decane by MRI Technique, H. Min, Y. Song, Y. Zhao, Y. Liu, B. Su, L. Jiang, X. Zhou, L. Tang	9887/CDS-J-213 Study on Computational Method of Filmwise Non-Equilibrium Condensation, T. Ohshima, T. Kajishima	9326/ECS-K-213 Efficient Utilization of the Electrodes in a Redox Flow Battery by Modifying Flow Field and Electrode Morphology, S. Tsushima, F. Kondo, S. Sasaki, S. Hirai
10:40	9469/FCV-F-214 Flow and Heat Transfer Characteristics of Ammonium Alum Hydrate Slurries with Surfactants as Drag-Reducers and with Polyvinyl Alcohol as Stabilizers, R. Hidema, H. Suzuki, T. Tano, Y. Komoda	8929/HEX-G-214 A Numerical Study on Turbulent Single-Phase Flow and Heat Transfer in Pillow Plates, M. Piper, A. Zibart, J.M. Tran, E.Y. Kenig	9808/EEC-H-214 Liquid Film Wave Patterns and Dryout in Microgap Channel Annular Flow, C. Holloway, A. Bar-Cohen, D. Sharar	<u>9664/TPP-I-214</u> Heat Transport Along Polar Nanofilms Due to Surface Phonon-Polaritons, J. Ordonez-Miranda, L. Tranchant, B. Kim, Y. Chalopin, T. Antoni, S. Volz	8532/CDS-J-214 A New Model for Refrigerant Condensation inside a Brazed Plate Heat Exchanger (BPHE), G.A. Longo, G. Righetti, C. Zilio	8552/ECS-K-214 Experimentally Determined Thermal Parameters of an Energy Conversion Device Using a Constraint Least Square Parameter Estimation Method Coupled with an Analytical Thermal Model, J. Hey, A. Malloy, R. Martinez-Botas, M. Lamperth
11:00	9210/FCV-F-215 Inlet Flow Effects in Microchannels on Single-Phase Heat Transfer Coefficients and Friction Factors, D.V. Garach, J. Dirker, J.P. Meyer	9144/HEX-G-215 Quantitative Estimation of Frost Formation on Plate-Fn Tube Heat Exchanger by Neutron Radiography, R. Matsumoto, T. Yoshimura, H. Umekawa, T. Ami, D. Ito, Y. Saito		8917/TPP-I-215 Thermal Conductivity of Silicon Nanofilms Predicted by Combined Phonon Hydrodynamics and Phonon Gas Dynamics, Y. Dong, B. Cao, Z. Guo	9416/CDS-J-215 Nitrogen Liquefaction: A Prototype Plant, M. De Salve, D. Milani, B. Panella, G. Roveta	9402/ECS-K-215 Effect of Thermal Conductivity Enhancement of Thermochemical Energy Storage Material on Unused Heat Utilization System, Y. Kato, M. Zamengo, K. Fujioka
11:20	9250/FCV-F-216 Heat Transfer Coefficients for Tubes in the Turbulent Single Phase Flow Regime with a Focus on Uncertainty, M. Steyn, J.P. Meyer					

12th, Tuesday

Session 22 (14:00 - 16:00)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	FBL1 : Flow Boiling (1) M. Kohno & J. K. Oh	SOL2 : Solar Energy (2) P. Dutta & S. Hirasawa	MIN2 : Measurement and Instrumentation (2) K. Ogawa & W. Rohlfs	HTE1 : Heat Transfer Enhancement (1) K. Fujioka & J. Szmyd	TBF : Two-phase, Bubble Flow, Water Film M. Katsuta & A. Sielaff	BMA2 : Bio and Medical Applications (2) H. Orlande & H. Takamatsu
14:00	9930/FBL-B1-221 Experimental Investigations of Flow Boiling Heat Transfer and Flow Behaviors in Microgap Channel, O. Kawanami, Y. Matsuda, Y. Egami, I. Honda, H. Yamaguchi, T. Niimi	9067/SOL-B2-221 A Heat Transfer Model for Concentrating Silicon Solar Cells in a Spectrally Splitting Hybrid Receiver, A. Mojiri, C. Stanley, E. Thomsen, V. Everett, A. Blakers, G. Rosengarten	9132/MIN-C1-221 Non Contact Temperature Field Measurement on Non-Uniform Dynamical Scenes: Contribution of Thermoreflectometry, R. Gilblas, T. Sentenac, Y. Le Maoult, D. Hernandez	8240/HTE-C2-221 Heat Transfer in a 90° T-Junction, J. Pellé, O. Duran Medina, T.D. Nguyen, S. Harmand	8960/TBF-D-221 Bubble Growth in Microgravity under the Action of Electric Forces: Experiments and Numerical Simulation, P. Di Marco, R. Kurimoto, G. Saccone, K. Hayashi, A. Tomiyama	9304/BMA-E-221 Experimental Study on the Vascular Thermal Response to Visible Laser Pulses, D. Li, B. Chen, W. Wu, G. Wang, Y. He, Z. Ying
14:20	9604 FBL-B1-222 An Experimental Investigation of Two-Phase Refrigerant R-410A Flow Distribution in Plate Heat Exchangers, C. Yang, Y. Lin, G. Li	9239/SOL-B2-222 An Integrated Thermal Electrical Model for Single Cell Photovoltaic Receivers under Concentration, M. Theristis, T. S. O'Donovan	9929/MIN-C1-222 Accuracy Verification on 2D Temperature Measurement Method Using CT-Tunable Diode Laser Absorption Spectroscopy, T. Kamimoto, Y. Deguchi, Y. Kiyota	9123/HTE-C2-222 Numerical and Experimental Studies of the Flow and Heat Transfer in Circular Tubes with Straight Frame Rotor Inserts, X. Zhu, J. Meng, H. Zhou, Z. Li	8906/TBF-D-222 Study on Liquid Film Thickness of Accelerated Slug Flow in Micro Tubes, K. Muramatsu, Y. Youn, Y. Han, K. Yokoyama, Y. Hasegawa, N. Shikazono	8933/BMA-E-222 Observation of Ice-Solute Interaction in Freezing of Trehalose and Albumin Solutions by Using Confocal Raman Microscope Equipped with Directional Solidification Stage, H. Hirahata, Y. Nagare, A. Twomey, K. Kurata, T. Fukunaga, A. Aksan, H. Takamatsu
14:40	8821/FBL-B1-223 Enhancing FC-72 Flow Boiling Heat Transfer through Bubble Pumping from Imbalance Shear Flow Driven Rotating Beads, S. Wang, T. Lin	<u>9597/SOL-B2-223</u> Investigation of Design Parameters in Planar Solar Thermophotovoltaic Devices, D. Bierman, A. Lenert, E. Wang	9934/MIN-C1-223Simultaneous2D NH₃ and TemperatureMeasurement Using CT-TunableDiode Laser AbsorptionSpectroscopy,Y. Deguchi, T. Kamimoto, Y. Kiyota	9615/HTE-C2-223 A Numerical and Experimental Study on Flow and Heat Transfer Characteristics of Viscoelastic Fluid in a Serpentine Channel, K. Tatsumi, W. Nagasaka, T. Matsuo, K. Nakabe	<u>9171/TBF-D-223</u> Microscale Convective Heat Transfer with Plug Flow in Microchannels, T. Wong, Z. Che, N.T. Nguyen	<u>9119/BMA-E-223</u> Voxel-Based Simulation of Air-Conditioning in the Human Nasal Cavity, G. Tanaka, F. Araki, S. Shimizu, T. Sera, H. Yokota, K. Ono
15:00	8800/FBL-B1-224 The Impact of Fin Deformation on Boiling Heat Transfer and Pressure Drop in Internally Grooved Tubes, S. Mehendale	<u>9490/SOL-B2-224</u> Numerical Simulation of Parabolic Trough Receiver under Non-Uniform and Fluctuant Solar Flux Condition, K. Wang, Y. He, Z. Cheng, M. Li, W. Tao	8853/MIN-C1-224 Cooling of Electronic Components by Steady/Unsteady Air Flow, D. Altura, A. Liberzon, N. Brauner	9974/HTE-C2-224 Numerical Investigation of Bénard-Marangoni Convection of Paramagnetic Liquid in Annular Layers, T. Tagawa	8857/TBF-D-224 Measurements of Heat Transfer Coefficients to Cylinders in Shallow Bubble Columns, E. W. Tow, J.H. Lienhard V	<u>9542/BMA-E-224</u> Blinking and Temperature Gradients in Normal Functioning Human Eye, A. Abdelmessih
15:20	8435 FBL-B1-225 Evaluation of Correlations for Predicting Heat Transfer during Boiling of Carbon Dioxide Inside Channels, M. Shah	<u>9290/SOL-B2-225</u> Numerical Simulation of Heat Transfer in a Directly Illuminated Solar Thermal Energy Store, I. Amber, T. S. O'Donovan	9574/MIN-C1-225 Effect of the Vapor Flow on the Drop Spreading in the Leidenfrost Regime, G. Castanet, O. Caballina, A. Labergue, M. Gradeck, F. Lemoine	9062/HTE-C2-225 Investigation of Heat Exchange and Hydrodynamics Parameters in Annular Channels with Interacting Swirling Flows, A. Zakharenkov, E. Boltenko, A. Varava, A. Dedov, A. Komov	8573/TBF-D-225 Experimental Research on Falling Film Flow Characteristic for Horizontal Drop-shaped Tube Bundle in Cold State, C. Bai, L. Luo, G. Zhang, M. Tian, W. Li, Y. Shi	8277/BMA-E-225 Investigations on Interactions between Heat Exchanger Biofouling and Suspended Matter, Q. Yang, L. Shi, S. Chang
15:40	8351/FBL-B1-226 Evaluation of a Method for Predicting Heat Transfer during Boiling of Mixtures in Plain Tubes, M. Shah	<u>9526/SOL-B2-226</u> Heat Transfer Modeling in Integrated Photoelectrochemical Hydrogen Generators Using Concentrated Irradiation, S. Tembhurne, M. Dumortier, S. Haussener	9918/MIN-C1-226 Cross-Ventilation Measurements in Buildings: Small and Full Scales Experimental Models, J. Salort, H. Pabiou, F. Chillà, C. Ménézo		<u>8671/TBF-D-226</u> Study of the Flow and Heat Transfer of Water Film on Hot Air Anti-Icing Airfoil Surface, M. Zheng, W. Dong, G. Lei, J. Zhu	

Session 22 (14:00 - 16:00)

12th, Tuesday

	Room F	Room G	Room H	Room I	Room J	Room K
	FCV4 : Forced Convention (4)	HEX3 : Heat Exchanger (3)	EEC2 : Electronic Equipment Cooling (2)	TPP4 : Thermophysical Properties (4)	CDS4 : Condensation (4)	EEF1 : Energy Efficiency (1)
14:00	S. Chandra & K. Yoshida 8952/FCV-F-221 An Analytical Study of the Heat Transfer in a Regular-Shaped Micro-Channel Type Stirling Regenerator, Z. Li, D. Tang, Y. Haramura, M. Zeng, Y. Kato	Jalaluddin & H. Suzuki 9435/HEX-G-221 Enhanced Melting in Geometries Suitable for Thermal Energy Storage, T. Rozenfeld, Y. Kozak, G. Ziskind	M. Ishizuka & N. Jeffers 9594/EEC-H-221 Conjugate Forced Convection-Conduction Heat Transfer in Channel Flow Using Different Cooling Fluids, F.B. Nishida, Y. de S. Tadano, T. Antonini Alves	J. Okajima & H. Xie <u>8604/TPP-I-221</u> Investigation into the pH and Electrical Conductivity Enhancement of MgO-Ethylene Glycol Nanofluids, S.A. Adio, M. Sharifpur, J.P. Meyer	N. Miljkovic & T. Takeda 9335/CDS-J-221 The Enhancement of Steam Condensation Heat Transfer on a Horizontal Tube by Addition of Ammonia, B. Dong, J. Zhao, S. Wang, M. Ge, Y. Zhao, K. Liang	W. Heidemann & Y. Kato 8661/EEF-K-221 Pilot Test and Model Analysis of Plastic Heat Exchanger for Flue Gas Heat Recovery, L. Chen, X. Du, J. Liang, Y. Sun, L. Yang, G. Xu
14:20	9280/FCV-F-222 Effects of Evaporation and Condensation on Apparent Thermal Slip, M. Hodes, L. Lam, S. MacLachlan, R. Enright	9085/HEX-G-222 Fin Efficiency and the Optimisation of X-Shaped Louvered Fins, B. Ameel, J. Degroote, H. Huisseune, J. Vierendeels, M. De Paepe	9396/EEC-H-222 Development of In-Plane Thermal Conductivity Measurement Method of Multi-Layer Printed Wiring Boards Called Straight Fin Temperature Fitting Method, T. Ogushi, K. Aoki, T. Kobayashi, Y. Niki, T. Hirata	8606/TPP-I-222 Combined Influence of Size and Sonication on Constant Shear Viscosity of MgO-Ethylene Glycol Nanofluids, S.A. Adio, M. Sharifpur, J.P. Meyer	9609/CDS-J-222 Droplet Departure Characteristics for Steam Dropwise Condensation at Low Pressure, X. Ma, R. Wen, Z. Lan, B. Peng, W. Xu	8390/EEF-K-222 Thermo- Electricity Analogy Method for Computing Transient Heat Transfer In a New Reciprocating Finned Piston Compressor, M. Heidari, K. Gharibdoust, A. Rufer, J.R. Thome
14:40	9409/FCV-F-223 Characteristics of Thermal Convective Flow of Near-Critical CO ₂ Fluid in Microchannels, L. Chen, X. Zhang	<u>9362/HEX-G-223</u> The Effect of the Circular Cylinder's Insertion Position on Heat Transfer Enhancement in Transition Flow, H. Xu, L. Wang, K. Inaoka, G. Xi	8546/EEC-H-223 L-Shaped Thermosyphon Loop with Vertical Evaporator for Power Electronics Cooling, F. Agostini, T. Gradinger	<u>9160/TPP-I-223</u> Evaporation of Nanofluids, J. Eggers, S. Kabelac	9177/CDS-J-223 Wettability-Driven Water Condensation at the Micron and Submicron Scale, Y. Yamada, A. Kusaba, T. Ikuta, T. Nishiyama, K. Takahashi, Y. Takata	9767/EEF-K-223 Heat Transfer Analysis of Blast Furnace Tuyere through CFD Simulation, Y. Chen, B. Wu, X. Chen, A. Okosun, D. Fu, T.R. Hensler, D. Zuke, S. Trenkinshu, C.Q. Zhou
15:00	9745/FCV-F-224 Experimental Analysis of Gas Forced Convective Heat Transfer in Microtubes under H and T Thermal Boundary Conditions, Y. Yang, C. Hong, G.L. Morini	9194/HEX-G-224 Study of Heat Pipe Effectiveness Filled with Different Refrigerants, G. Gorecki	9420/EEC-H-224 Performance Evaluation of Micro-Jet Impingement on Various Dimpled Surfaces, S. Kim, K. Kim	8643/TPP-I-224 Frost Formation and Growth on Hydrophilic, Hydrophobic, and Biphilic Surfaces, A. Van Dyke, A. Betz	9801/CDS-J-224 Bulk Condensation of Supersaturated Vapor with Allowance of Temperature Distribution of Droplets, N. Kortsenshteyn, A. Yastrebov	9020/EEF-K-224 Entransy Based Optimization on Data Center Cooling Process and Its Application, H. Tian, Z. Li, Z. He
15:20				8835/TPP-I-225 A Non-Equilibrium Molecular Dynamics Study on Thermal Transport in Functionalized Carbon Nanotube/ Polymer Nanocomposites, Y. Kuang, B. Huang	9895/CDS-J-225 Study of the Heat Transfer and Flow Characteristic of an Ultra Micro Steam Injector, T. Koshiji, Y. Abe, A. Kaneko, Y. Suzuki	
15:40				8348/TPP-I-226 Two Different Methods for Determination of Exothermic Reaction Enthalpies from Temperature Measurements in Beechwood Cylinders during Torrefaction, A. Ohliger, P. Steffen, R. Kneer	8969/CDS-J-226 Condensation of Water from Saturated Air in a Compact Plate Condenser with Application to Water Balance in Proton Exchange Membrane Fuel Cell Systems, A. Elv. B. Thring	

12th, Tuesday

Session 23 (16:30 - 18:30)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	FBL2 : Flow Boiling (2) H. Asano & S. Mehendale	SOL3 : Solar Energy (3) K. Nagano & R. Taylor	MIN3 : Measurement and Instrumentation (3) N. Ninomiya & H. Pabiou	HTE2 : Heat Transfer Enhancement (2) M. Kawaji & N. Sasaki		
16:30	8792/FBL-B1-231 Pressure Drop and Flow Boiling Heat Transfer of Refrigerant R-134a in a Microchannel Heat Sink, V.V. Kuznetsov, A.S. Shamirzaev	9014/SOL-B2-231 A Numerical Model of Transient Thermal Transport Phenomena in a High-Temperature Solid-Gas Reacting System for CO ₂ Capture Applications, Li. Yue, W. Lipinski	8595/MIN-C1-231 The Effect of Sonication Time on Effective Thermal Conductivity of Glycerol-MgO Based Nanofluids, N. Tshimanga, M. Sharifpur, J.P. Meyer	8825/HTE-C2-231 Numerical Investigation of Fluid Flow and Heat Transfer Characteristics of Partial Length Pin Fins in Vertical Parallel Plate Channel, R.S. Jadhav, C. Balaji	IHTC Since 1951	IHTC Since 1951
16:50	9049/FBL-B1-232 Experimental Study of Two Phase Flow Boiling Heat Transfer and Pressure Drop of Water in a Minitube, M. Aravinthan, S.K. Das, A.R. Balakrishnan	8681/SOL-B2-232 DSMC Study on the Rarefied Gaseous Heat Transfer in Annulus Heated by Nonuniform Heat Flux, X. Zhao, Z. Li, Z. Tang, W. Tao	<u>9800/MIN-C1-232</u> Thermal- Hydraulic Experiments with Sodium Chloride Aqueous Solution, L. Jiao, W. Liu, T. Nagatake, K. Takase, H. Yoshida, F. Nagase	<u>9372/HTE-C2-232</u> Thermal Performance of Nanofluids in Microchannel Equipped with a Synthetic Jet Actuator, A. Lee, D. Darson Li, G.E. Lau, G.H. Yeoh		
17:10	9410/FBL-B1-233 Heat Transfer Coefficient and Pressure Drop Characteristics during R-1234yf Evaporation Inside Horizontal Small Tubes, N. Chien, P. Vu, K. Choi, J. Oh	9309/SOL-B2-233 Forecast Methods for Direct Normal Irradiance at the Ground Level, C. Coimbra	8605/MIN-C1-233 Combined Three-Dimensional Flow- and Temperature Field Measurements Using Digital Light Field Photography, M. Rietz, O. Garbrecht, W. Rohlfs, R. Kneer	<u>9259/HTE-C2-233</u> The Effect of a Crossed Electromagntic Field on Mixed Convection of a Low Pr Fluid in a Vertical Duct, Praveen T., N. L Gajbhiye, V. Eswaran		
17:30	9589/FBL-B1-234 Characteristics of Flow Boiling Heat Transfer in Rectangular Minichannels, C. Tanaka, C. Dang, E. Hihara	9257/SOL-B2-234 Simulation Study of Regenerator of Stirling Engine Used for Solar Energy Thermal Power Generation, J. Wang, X. Zhang, M. Zeng, M. Jia	8855/MIN-C1-234 Temperature Imaging of Water Around a Small Heated Sphere Using a Near-Infrared Absorption Technique, N. Kakuta, K. Yamada, R. Fujioka, K. Kondo, H. Arimoto, Y. Yamada	9950/HTE-C2-234 An Analysis of Paramagnetic Fluid Thermal Convection in a Concentric Annuli under Strong Magnetic Field Gradient, W. Wrobel, E. Formalik-Wajs, Ł. Pleskacz, S. Kenjereš, J.S. Szmyd		
17:50	<u>9122/FBL-B1-235</u> Flow Boiling Heat Transfer of R1234ze(E) in a 3.4 mm ID Microfin Tube, S. Mancin, A. Diani, L. Rossetto	9150/SOL-B2-235 Heat Transfer Enhancement in a Parabolic Trough Receiver Using Perforated Conical Inserts, A. Mwesigye, T. Bello-Ochende, J.P. Meyer	8990/MIN-C1-235 New Estimation Method Based on Integral Transforms for the Thermal Diffusivity Measurement of Anisotropic Materials, C. Rodiet, M. Niezgoda, B. Remy, A. Degiovanni			
18:10	8705/FBL-B1-236 An Analysis of the Effect of the Footprint Orientation on the Heat Sink Performance during Flow Boiling in Micro-Scale Channels, H.L.S.L. Leão, G. Ribatski		9380/MIN-C1-236 Visualization and Analysis of Heat and Mass Transfer with Chemical Reactions in Microchannels, D. Kawashima, N. Kakuta, K. Kondo, H. Arimoto, Y. Yamada			

Session 23 (16:30 - 18:30)

12th, Tuesday

	Room F	Room G	Room H	Room I	Room J	Room K
	FCV5 : Forced Convention (5)	HEX4 : Heat Exchanger (4)	EEC3 : Electronic Equipment Cooling (3)	TST : Thermal Storage	CDS5 : Condensation (5)	EEF2 : Energy Efficiency (2)
16:30	J. Alvarado & K. Suga <u>8769/FCV-F-231</u> Volumetric Heat Transfer Determination for Forced Convection of Air through Alumina (Al ₂ O ₃) Foam, D. Vijay, P. Goetze, R. Wulf, U. Gross	J. Barbosa & H. Umekawa 9766/HEX-G-231 Numerical Simulation of 3D Flow Effect on Heat Transfer from a Tube Bank of Subsea Cooler, N.Ivanov, V. Ris, E.M. Smirnov, N. Tschur	F. Agostini & I. Ogushi 9166/EEC-H-231 The Forced Circulation Cooling System with Rectangular Mini-Channels for the Inverter of Electric Vehicles, J. Yeo, D. Jige, S. Yamashita, S. Koyama	D. Groulx & G. Tanaka <u>9169/TST-I-231</u> Non-Isothermal Kinetics of Zeolite Water Vapor Adsorption into a Packed Bed Lab Scale Thermochemical Reactor, M. Gaeini, H. Zondag, C. Rindt	I. Isuruta & A. Yastrebov <u>9002/CDS-J-231</u> Study of the Vapor Superheat Effect on Heat Transfer in Plate Heat Exchanger Based on Infrared Thermography, K. Sarraf, S. Launay, L. Tadrist	M. Hirota & C. Q. Zhou 8843/EEF-K-231 Treated Aluminum as Highly Reflective Facade Materials for Energy-Efficient Buildings, T. Ihara, T. Gao, A. Gustavsen, B.P. Jelle
16:50	<u>9036/FCV-F-232</u> High Temperature Metal Foam Heat Exchanger, P. Hafeez, S. Salavati, J. Esmeelpanah, S. Chandra, J. Mostaghimi, T. Coyle	9041/HEX-G-232 Effect of Fin Specification on Thermal Performance of Fin-Tube Heat Exchanger for Heat Pump under Frosting Condition J. Kim, K. Cho	<u>9936/EEC-H-232</u> Practical Measurement System for Very Large Scale Integration Circuits Using Infrared Thermography, Y. Hsieh, J. Wu, C. Fang, H. Tsai, Y. Juang	9987/TST-I-232 A Composite Mesoporous Material for an Open Sorption Thermal Energy Storage System, H. Liu, K.Nagano, D. Sugiyama, J. Togawa, M. Nakamura	8896/CDS-J-232 Electric-Field-Enhanced Jumping-Droplet Condensation, N. Miljkovic, D.J. Preston, R. Enright, E.N. Wang	<u>9681/EEF-K-232</u> Application of Micro-Channel Heat Exchanger in Refrigerated Display Cabinet, C. Tian, H. Li
17:10	<u>9167/FCV-F-233</u> Experimental Determination of Convective Heat Transfer Coefficients during Molten Aluminum Purification Using Open Cell Alumina (AL ₂ O ₃) Ceramics, P. Goetz, D. Vijay, E. Jäeckel, R. Wulf, U. Gross, K. Eigenfeld	9644/HEX-G-233 CFD Modelling of Flow over in-Line Tube-Banks, H. lacovides, B. Launder, A. West	9227/EEC-H-233 Heat Transfer and Fluid Mechanics from a Piezoelectric Fan Operating in Its Second Resonant Frequency Mode, N. Jeffers, J. Stafford, B. Donnelly	8881/TST-I-233 Investigation of Heat and Mass Transfer in a Magnesium Hydride Heat Storage Reactor, D. Shen, C. Zhao, Q. Wang	9082/CDS-J-233 Study on the Compact Steam Dump Device Development for the Damage Reduction of the Condenser Tube, H. Kim, W. Kim, J. Lee	8632/EEF-K-233 Energy Efficient Cooling of Switch Cabinets Using Optimized Internal Settings, W. Heidemann, C. Staub, K. Spindler
17:30	9489/FCV-F-234 Hydrothermal- Wave Instability and Resultant Flow Patterns Induced by Thermo- capillary Effect in a Half-Zone Liquid Bridge of High Aspect Ratio, I. Ueno, H. Kawasaki, T. Watanabe, K. Motegi, T. Kaneko	9093/HEX-G-234 Maximal Velocity Ratio Design Method for Shell-and-Tube Heat Exchangers with Continuous Helical Baffles, J. Yang, M. Zeng, G. Chen, Q. Wang	9115/EEC-H-234 Convolution Based Steady State Compact Ther- mal Model for 3D Integrated Circuits: Methodology for Including the Ther- mal Impact of Die to Die Interconnec- tions, F.L.T. Maggioni, H. Oprins, E. Beyne, I. De Wolf, M. Baelmans	8892/TST-I-234 Heat Transfer in Latent Heat Thermal Energy Storage Device for Automobile Applications, D.PC. Shih, H. Tran, M. Kawaji, M. Birkett, J. Burgers	8916/CDS-J-234 Parameter Comparison of Condensation Heat Transfer of R134a Outside Horizontal Low-Finned Tubes, D. Zhang, W. Ji, J. Du, Z. Zhang, X. Fan, Y. He, W. Tao	8995/EEF-K-234 A Numerical Solution Algorithm for a Heat and Mass Transfer Model of a Desali- nation System Based on Packed- Bed Humidification and Bubble Column Dehumidification, K. Chehayeb, F. Cheaib, J. Lienhard V
17:50	9852/FCV-F-235 The Effect of Radiative Heat Transfer on Slip Flow through Parallel-Plate Microchannels, M. Shojaeian, R. Zamanian, A. Koşar	9791/HEX-G-235 Optimization of Lifetime Expectance for Heat Exchangers with Special Requirements, P. Freko, I. Thomas, R. Hoelzl, A. Lehmacher, A. Woitalka		8518/TST-I-235 Experimental and Numerical Investigation of Phase Change Heat Transfer Characteristics in Open-Cell Metal Foam Infiltrated with Eutectic Salt for Solar Energy Storage, P. Zhang, X. Xiao, M. Li	<u>9161/CDS-J-235</u> Analysis of the Condensate Carryover Phenomenon on Fin and Tube Evaporators, E. Navarro-Peris, J. Corberan, J. Gonzálvez-Maciá, M. Zamora	
18:10		9449/HEX-G-236 Size Effect of the Flow Path on the Flow and Heat Transfer Characteristics in a Cavity Swept by a Visco-Elastic Fluid, H. Suzuki, R. Hidema, Y. Komoda		8753/TST-I-236 Performance Analysis of the Molten-Salt Thermal Storage System Filled by PCM Capsules with Cascaded Melting Temperatures, C. Xu, M. Wu, X. Ju, X. Du, Y. He, Y. Li	9296/CDS-J-236 Effect of Hydrocarbon Adsorption on the Wetting of Rare Earth Oxides, D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queency, E. N Wang	

13th, Wednesday

Session 31 (08:20 - 10:20)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	FBL3 : Flow Boiling (3) T. Kunugi & S. Launay	TPF1 : Two-phase, Flow Behavior (1) S. Momoki & M. Spector	IPJ : Impinging Jet K. Muralidhar & N. Nagai	HTE3 : Heat Transfer Enhancement (3) Y. Shibata & T. N. Wong		
08:20	9867/FBL-B1-311 A Study on Post-CHF Heat Transfer at Near-Critical Pressure, T. Mawatari, H. Mori, K. Kariya	8981/TPF-B2-311 Analysis of Two-Phase Flow Behavior in a Sharp Return Bend Using Capacitive Measurements, K.De Kerpel, M.De Paepe	9035/IPJ-C1-311 Heat Transfer Measurements from Concave and Convex Surfaces with a Fully Developed Confined Impinging Slot Jet, S. Kim, Y. Kim, H. Park, D. Lee, P. Ligrani	8750/HTE-C2-311 A Numerical Study of Fluid and Heat Transfer Performance of Heat Exchangers with Novel Short-Circuit Prevention Helical Baffles, W. Du, H. Wang, G. Xin, S. Zhang, L. Cheng	IHTC Since 1951	IHTC Since 1951
08:40	9840/FBL-B1-312 Effect of Heat Transfer Surface Structure on Boiling Heat Transfer and Flow Characteristics in a Horizontal Narrow Channel, H. Asano, J. Yoshidome, T. Gomyo	9810/TPF-B2-312 Non-Equilibrium Discharging Flow From Safety Valves, Y. Kitagawa, S. Horiki, M. Osakabe	8838/IPJ-C1-312 Transient Flow and Thermal Performance of Integrated Deflector under Periodic Supersonic Flame Impingement, J. Zhang, Z. Qu, R. Fu, Y. He	9424/HTE-C2-312 Numerical Study of Flow and Heat Transfer Characteristics of Different Distributed Corrugated Tube Bundles, W. Shao, B. Li, H. Wu, Y. Zhang, Z. Xu		
09:00	9214/FBL-B1-313 Boiling Investigation in the Microchannel with Nano-Particles Coating, Y. Kuzma-Kichta, A. Leontyev, A. Lavrikov, M. Shustov, K. Suzuki	8971/TPF-B2-313 Visualization of Ammonia Boiling Flow Phenomena Inside Narrow Flat Plates, H. Arima, F. Mishima, K. Koyama, Y. Ikegami	9047/IP.J-C1-313 Experimental and Numerical Investigation of the Flow behind a Sphere Moving Vertically in a Stratified Fluid, S. Akiyama, S. Nakamura, S. Okino, H. Hanazaki	8727/HTE-C2-313 Mathematical Derivation on Heat Transfer Improvement of the Air-Cooled Condenser Cell in a Power Plant, H. Zhang, H. Zhou, Y. Yue, L. Yang, X. Du, Y. Yang		
09:20	9072/FBL-B1-314 Flow Boiling under Microgravity Conditions Comparative Study of Two Experimental Data Sets, M. Narcy, A. Scammell, C. Colin, J. Kim	8720/TPF-B2-314 Dynamic Flow Structures in the Wakes of Sliding Bubbles for Convective Heat Transfer Enhancement, R. O'Reilly Meehan, B. Donnelly, T. Persoons, D. Murray	9385/IPJ-C1-314 Heat transfer Enhancement for Row of Impinging Jets in Cross-Flow with Some Baffle Attachments, R. Pansang, M. Wae-hayee, P. Vessakosol, C. Nuntadusit	9931/HTE-C2-314 Analysis on Optimal Configuration of Air-Foil Shaped Printed Circuit Heat Exchanger in Supercritical Carbon Dioxide Power Cycle, S. Yoon, J. Kwon, T. Kim, H. Park, M. Kim		
09:40	9333/FBL-B1-315 Micro Liquid Film Heat Transfer and Critical Heat Flux of Flow Boiling in Micro-Channels, Y. Jiang, T. Wang, Z. Wang, D. Tang	8927/TPF-B2-315 Structure of <i>Two-Phase Swirl Flow in Various</i> <i>Channels,</i> A. Yakovlev, S. Tarasevich, A. Shishkin		8719/HTE-C2-315 New Correlations for Heat Transfer and Pressure Drop for Serrated and Solid Fin Tube Bundles, A. Holfeld, E. Næss		
10:00				8867/HTE-C2-316 Model-Based Optimization of Three-Dimensional Complex Structure for Heat Transfer Enhancement in Single-Phase Flows, Y. Hasegawa, N. Shikazono		

Session 31 (08:20 - 10:20)

13th, Wednesday

	Room F	Room G	Room H	Room I	Room J	Room K
	FCV6 : Forced Convention (6)	MFP : Materials and Foods Processing	NSM1 : Numerical Simulation (1)	PMD1 : Porous Media (1)	RAD1 : Radiation (1)	PLS : Plasma
08:20	Y. Hattori & M. Hodes 8378/FCV-F-311 Influence of Local Flow Acceleration on the Heat Transfer of Submerged and Free-Surface Jet Impingement,	Y. Shan & T. Yoshinaga 8844/MFP-G-311 The Contact Heat Transfer in Rotary Drums in Dependence on the Particle Size Ratio,	L. Gong & M. Tanahashi 9037/NSM-H-311 Heat and Mass Transfer Modelling of an Industrial Autoclave to Minimise Steam Consumption,	M. Quintard & S. Uemura 8405/PMD-I-311 Thermal Conductivity of Ceramic Sponges at Temperatures up to 1000 °C, B. Dietrich, T. Fischedick, M.	V. Rodolphe & J. Yamada 8207/RAD-J-311 Effect of Pro- cessing Temperature on Radiative Properties of Polypropylene and Heat Transfer in the Pure and	Y. Itaya & Y. Yan <u>9138/PLS-K-311</u> 3D Numerical Simulation of Buoyancy Driven Flow in a Cubical Enclosure with Different Wall Conductivities,
	W. Rohlfs, C. Ehrenpreis, H.D. Haustein, O. Garbrecht, R. Kneer	A.I. Nafsun, F. Herz, E. Specht, V. Scherer, S. Wirtz, H. Komossa	W.L. Lau, J.A. Reizes, V. Timchenko, S. Kara, B.J. Kornfeld	Wallenstein, M. Kind	Glassfibre Reinforced Polymer, D. Hakoume, L. Dombrovsky, D. Delaunay, B. Rousseau	N. Gajbhiye, Praveen T., V. Eswaran
08:40	9295/FCV-F-312 Thermo- Hydrodynamic Characteristics of Magnetothermal Wind Created in a Tube in Gravitational and Nongravitational Fields, T. Okitsu, M. Akamatsu, M. Kaneda	<u>9321/MFP-G-312</u> Fundamental Study on Agglomeration Control of Metallic Nano-Particles by Thermal Treatment, T. Saito, T. Kawaguchi, I. Satoh	8447/NSM-H-312 Heat Transfer Enhancement in a Tube Filled with a Porous Medium: Influence of the Thermal Conductivity of the Porous Medium, T. Ming, Y. Tao	8278/PMD-I-312 One Dimensional Thermal Analysis of Solar Air Receiver Using Silicon Carbide Ceramic Foam, F. Bai	8214/RAD-J-312 Radiative Heat Transfer Modeling in Supersonic Gas Flow with Suspended Particles to a Blunt Body, L. Dombrovsky, D. Reviznikov	9408/PLS-K-312 Integrated Modeling of Transport Phenomena in Keyhole Welding with Plasma Arc, Y. Li, Y. Feng, Y. Li, X. Zhang, C. Wu
09:00	8548/FCV-F-313 Heat and Mass Transfer in a Single-Channel Plate Membrane Contactor with a Combined Counter/Cross-Flow Arrangement, S. Huang, M. Yang, F.G.F. Qin, Y. Xu, Y. Zuo, X. Yang	8383/MFP-G-313 Three- Dimensional Simulation of Phosphor Dispensing Process in Light Emitting Diode Packaging by Lattice Boltzmann Method, L. Li, H. Zheng, C. Yuan, X. Yu, X. Luo	9182/NSM-H-313 Molecular Simulation of the Dynamic Process of Water Vapour Absorption into Aqueous LiBr Solution with or without Alcohol Surfactants, H. Gao, B. Zhu, Y. Yan	8530/PMD-I-313 Temperature Evolution of Evacuated Tube Adsorption Bed Heated by Solar Radiation, C. Du, Z. Yuan, X. Hou, F. Xin, D. Gao, Y. Chen	9012/RAD-J-313 Prediction of the Resonance Condition of Metamaterial Emitters and Absorbers Using LC Circuit Model, A. Sakurai, B. Zhao, Z. Zhang	8815/PLS-K-313 Thermoelectric Properties of ZnNiO/Polyparaphenylene Hybrids Prepared by Spark Plasma Sintering, Z. Wu, H. Xie, L. Gan, J. Liu
09:20	8711/FCV-F-314 Development of an Empirical Model for Convective Evaporation of Sessile Droplets of Volatile Fluids, F. Carle, D. Brutin	8715/MFP-G-314 Numerical Investigation of Cooling in the Continuous Fiber Glass Drawing Process, Q. Chouffart, P. Simon, V.E. Terrapon	9196/NSM-H-314 Comparative Study on Simulation of Convective Al ₂ O ₃ -Water and ZrO ₂ -Water Nanofluid by Using ANSYS-FLUENT, M. Mahdavi, M. Sharifpur, J. P. Meyer	8893/PMD-I-314 Heat and Mass Transfer Model of a Packed-Bed Reactor for Solar Thermochemical CO ₂ Capture, L. Reich, R. Bader, T. Simon, W. Lipinski	9222/RAD-J-314 The Micro-Macro Model for Transient Radiative Transfer Simulations, M. Roger, N. Crouseilles, P.J. Coelho	9541/PLS-K-314 Application of an Integrated CFD Model to Aluminum Nanoparticle Production, S. Lopes, P. Proulx, JB. Gouriet, P. Rambaud
09:40	8736/FCV-F-315 Behavior and Optimization of Spray Humidification inside Air-Cooled Condenser of Power Generating Unit, L. Xiao, X. Xi, X. Du, L. Yang	8601/MFP-G-315 Optimization of the Chemical Vapor Deposition Process for Gallium Nitride, P. George, J. Meng, Y. Jaluria	8760/NSM-H-315 Effect of Material Thermal-Physical Parameters on Weld Pool and Residual Stress Peak Value, L. Tong , L. Li, F. Bai, S. Yin, L. Wang	8657/PMD-I-315 Evaluation of Gas Production Behavior from Hydrate-Bearing Sediments with Different Thermal Properties by Depressurization, Y. Song, Z. Zhu, J. Zhao, C. Cheng, D. Liu, L. Yang, J. Wang	9382/RAD-J-315 Numerical Study of the Effects of Surface Micro-Roughness on the Optical Constants of Aluminum Determined by Spectroscopic Ellipsometry, W. Zhang, J. Yang, L. Liu	9897/PLS-K-315 A Comparison of Methane Hydrate Decomposition Using Radio Frequency Plasma and Microwave Plasma Methods, I. Rahim, S. Nomura, S. Mukasa, H. Toyota
10:00			9069/NSM-H-316 Comparison of Preconditioned Density-Based Algorithm with Pressure-Velocity Correction Algorithm for Incompressible Convection, C. Shen, F. Sun, X. Xia	<u>9191/PMD-I-316</u> Identification of the Radiative Properties of α-SiC Foams Realistically Designed with a Numerical Generator, S. Guevelou, B. Rousseau, G. Domingues, J. Vicente, C. Caliot, G. Flamant	8268/RAD-J-316 Absorption of Short-Pulsed Laser Radiation in Superficial Human Tissues: Transient vs Quasi-Steady Radiative Transfer, J. Randrianalisoa, L. Dombrovsky, W. Lipinski, V. Timchenko	9415/PLS-K-316 Two Successive Thermal Inverse Problems Solved for Plasma Facing Components inside JET Tokamak: Estimation of Surface Heat Flux and Thermal Resistance of a Surface Carbon Layer, JL. Gaspar, F. Rigollet, J. Gardarein, C. Le Niliot, Y. Corre

13th, Wednesday

Session 32 (10:30 - 12:30)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	PBL1 : Pool Boiling (1) C. Colin & Y. Haramura	TPF2 : Two-phase, Flow Behavior (2) M. de Paepe & T. Yokomine	RNE : Renewable Energy C. Coimbra & K. Matsubara	HTE4 : Heat Transfer Enhancement (4) Y. Hasegawa & G. Xi		
10:30	<u>9284/PBL-B1-321</u> Numerical Simulation of Pool Boiling from Artificial Cavities Using the Phase Field Method, A. Sathyanarayana, Y. Joshi	9876/TPF-B2-321 Correlation of Transition Boundaries to and from Annular Flow Regime of Ammonia Evaporating Inside a Horizontal Internally Spirally Grooved Tube, S. Momoki, H. Arima, Y. Takashiba, T. Yamaguchi, S. Sasaki	8834/RNE-C1-321 Numerical Assessment and Optimization of Wind Farm on Complex Terrain, M. Song, B. Wu, K. Chen, Z. He, X. Zhang	9180/HTE-C2-321 Thermal- Hydraulic Performance of a Printed Circuit Heat Exchanger in a CO ₂ -H ₂ O Heat Exchange Process under Different Mass Flow Rates, X. Xu, T. Ma, L. Li, M Zeng, Q. Wang, Y. Chen	IHTC Since 1951	IHTC Since 1951
10:50	8590/PBL-B1-322 Numerical Simulation of Boiling from a Single Reentrant-Cavity, J. Dietl, P. Stephan	9376/TPF-B2-322 Effect of Flow Pattern on Critical Heat Flux, T. Ami, G. Yamashina, H. Umekawa, M. Ozawa	9869/RNE-C1-322 Numerical Modelling of Combined Natural Convection and Surface Radiation Heat Transfer in Cavity Receiver with Plate Fins, L.C. Ngo, T. Bello-Ochende, J.P. Meyer	9262/HTE-C2-322 Heat Transfer Characteristics in Forced Convection through a Rectangular Channel with V-Shaped Rib Roughened Surfaces, D. Fustinoni, P. Gramazio, L. Colombo, A Niro		
11:10	8851/PBL-B1-323 Direct Numerical Simulations of Subcooled Boiling Phenomena Based on Non-Empirical Boiling and Condensation Model, Y. Ose, T. Kunugi	9005/TPF-B2-323 A Phenomenological Model of Dryout with Circumferentially Varying Heat Flux, J. Manning, G.F. Hewitt, S. Walker	8963/RNE-C1-323 Prediction of the First Pyrolysis Product and Yield in Biomass Gasifier, Y. Okumura, T. Okada, K. Okazaki	8718/HTE-C2-323 Influence of the Fin Type and Base Tube Diameter of Serrated and Solid-Fin Tubes on the Heat Transfer and Pressure Drop Performance, A. Holfeld, E. Næss		
11:30	8911/PBL-B1-324 Numerical Simulation on Bubble Growth Process and Heat Transfer Characteristics with Microlayer Evaporation in Nucleate Boiling for Water, Z. Chen, Y. Utaka	<u>9023/TPF-B2-324</u> Study on High-Void Fraction Gas-Liquid <i>Two-Phase Flow in Tube Bundle,</i> Y. Kondo, L. Cheng, S. Utsumi, T. Ueno, R. Kawakami, K. Shimamura	9817/RNE-C1-324 A Numerical Study on Bed Temperature and Gasifying Agent Effetcs on the Sugarcane Bagasse Gasification Process, G. Verissimo, J. de Pinho, A. Leiroz, M.E. Cruz	8827/HTE-C2-324 Heat Transfer Enhancement in Heat Exchanger with Dimpled/ Protruded Surface, T. Tang, A. Lee, G. Yeoh		
11:50	9631/PBL-B1-325 Effect of Surface Wettability on Subcooled Boiling Heat Transfer, Y. Saito, D. Ito		8989/RNE-C1-325 Optimal Sizing of Heat Exchangers for Organic Rankine Cycles (ORC) Based on Thermo-Economics, S. Lecompte, M. van den Broek, M. De Paepe	9864/HTE-C2-325 Pool Boiling of Hydrocarbon Mixture in Kettle-Reboiler with Low-Finned Tubes, E. Estiot, C. Richardt		
12:10	8817/PBL-B1-326 Boiling Heat Transfer Theory: To Overcome Historical Deadlock, I.G. Shekriladze		9916/RNE-C1-326 Anatical Solution of Nanofluid Volumetric Receiver, S. Lee, H. Kim, Y. Park, K. Kim, S. Jang	9299/HTE-C2-326 In-Tube Convective Heat Transfer Charateristics of CO ₂ -Hydrate Mixture, H. Park, R. Yun		
Session 32 (10:30 - 12:30)

13th, Wednesday

	Room F	Room G	Room H	Room I	Room J	Room K
	FCV7 : Forced Convention (7)	ACR : Air Conditioning and	NSM2 : Numerical Simulation	PMD2 : Porous Media (2)	RAD2 : Radiation (2)	TEL : Thermoelectric Devices
	K. Kariya & R. Kneer	E. Hihara & J. Wei	T. Kajishima & Y. X. Tao	T. Chikahisa & B. Dietrich	P. Coelho & K. Hanamura	S. Lei & K. Yazawa
10:30	8418/FCV-F-321 A Uniform	8563/ACR-G-321 Study on Heat	9811/NSM-H-321 Towards	8575/PMD-I-321 A Rigorous	8771/RAD-J-321 Radiation	9360/TEL-K-321 Thermoelectric
	of High Concentrator Photo-Voltaic	Magnetic Regenerator in Magnetic	Solvers Based on the Link-Wise	Volume Averaged Transport	Micro Cavities in Resin,	Semiconductor-Polymer Molecular
	Systems,	Refrigeration System,	Artificial Compressibility Method,	Equations for Heat Transfer in	T. Totani, T. Irokawa, M. Iwata, M.	Junction,
	G. Hetsroni, A. Bar-Cohen	M. Kim, K. Kuk, I. Mun	C. Obrecht, F. Kuznik, G.	Nanofluid Saturated Metal Foams,	Wakita, H. Nagata	Y. Wang, H. Xie
			Rusaouen, J. Roux	r. Sarai, W. Li, A. Narayailia		
10:50	8684/FCV-F-322 Numerical Study	8940/ACR-G-322 Experimental	8812/NSM-H-322 Asymmetric	8782/PMD-I-322 Effective Thermal	8871/RAD-J-322 Study of	8966/TEL-K-322 Evaporation of a
	of Conjugate Heat Transfer of Supercritical Kerosene Flow in	Study of Ground Source Heat Pumps That Lise the Direct	Plane Fountains in Linearly	Conductivity of Metal Foams: Experiments and Analysis	Amorphous Silicon Gratings with Disorder for Solar Energy	Water Droplet Deposited on a Nano-Patterned Transparent Film
	Rectangular Cooling Channel	Expansion Method.	Stratified Fluids	P. Yue, L. Qiu, X. Zheng, D. Tang	Absorbers.	Fabricated by UV Nanoimprint
	F. Zhong, G. Dang, Y. Xing, L.	T. Takeda, D. Yokoyama, A.	M.I. Inam, W. Lin, S.W. Armfield, Y.		X. Fang, C. Zhao, H. Bao	N. Unno, M. Asano, S. Satake, J.
	Chen, X. Chang	Ohashi, S. Ishiguro, S. Funatani, K.	Не		_	Taniguchi
11:10	9266/FCV-F-323 Determination of	9310/ACR-G-323 Prediction	9729/NSM-H-323 Unified Integral	8831/PMD-I-323 Evaluation of the	9636/RAD-J-323 Thermal	9096/TEL-K-323 Thermal
	Convective Heat Transfer for	Modeling of Automobile Dynamic	Transforms in Single Domain	Thermal Hydraulic Performance of	Radiation Characteristics in	Transport Properties of
	Subsonic Flows over Heated	Thermal Load,	Formulation for Internal Flow	Round Tube Metal Foam Heat	Sub-Micron Region for MEMS	PEDOT-PSS Thin Films,
	Asymmetric Airfoil NACA 4412,	J. Wu, H. Song, C. Liu	Three-Dimensional Conjugated	Exchangers for HVAC	Space Radiator,	H. Hagino, M. Hokazono, H. Anno,
	Y. Dag, S. Akwaboa, P. Mensah		Problems,	Applications, H. Huisseune, S. De	A. Ueno, Y. Suzuki	N. Toshima, K. Miyazaki
			D.C. Knupp, C.P. Naveira-Cotta, R M. Cotta	Schampheleire, B. Ameel, M. De		
11:30	8461/FCV-F-324 Convective Heat	9534/ACR-G-324 Development of	9521/NSM-H-324 Assessment of	8865/PMD-I-324 Comparison of	9384/RAD-J-324 First-Principles	9996/TEL-K-324 Experimental
	Transfer Characteristics of Low	All Aluminum Microchannel Heat	Three Coalescence and Breakage	Aluminium Foam Finned Heat	Study on Electronic Band Structure	Investigations on the Performance
	Concentrations CuO-Water	Exchanger for Air-Conditioner,	Kernel Models on Predicting	Sinks and Effect of Painting and	and Optical Constants of	of a Thermoelectric Device with an
	Nanofluid in the Turbulent Flow	H. Fujino, T. Kamada, S. Inoue	Complex Bubbly Flow,	Orientation in Buoyancy-Driven	Synthesized $Si_3AI(As_xP_{1-x})$ Alloys,	Integrated Heat Exchanger and
	Regime Based on Artificial		X. Duan, L. Gong	Convection, S. De Schampheleire,	J. Yang, L. Liu, J. Tan	Flow Channels,
	Intelligent Models, M. Mehrabi, M.			K. De Kerpel, G. Kennof, P. Pirmez,		M. Barry, K. Agbim, B.V.K. Reddy,
11.50	Sharifpur, J.P. Meyer		9792/NEM H 225 Mumarical	H. Huisseune, M. De Paepe	0199/DAD 1225 Deducing	M.K. Chyu
11.50	Processes in Film Casting of		<u>огозлузин-п-з25</u> Numerical Investigation on Conjugated Heat	Shape and Porosities on	<u>9100/RAD-J-323</u> Reducing Thermal Radiation Between	Ontimization of Automobile
	Compressible Polymers.		Transfer of Conduction in Wall and	Geometrical Properties and	Parallel Plates in the Far-to-Near	Exhaust Thermoelectric Generator
	J. Ramos		Mixed Convection in Horizontal	Effective Thermal Conductivity of	Field Transition Regime,	for Waste Heat Recovery,
			Square Tube with Molten Salts,	Kelvin Like Anisotropic Metal	Y. Tsurimaki, P.O. Chapuis, R.	Z. Niu, Q. Li, W. He, Y. Huo, K. Jiao
			C. Wang, Y. Wu, C. Chen, B. Liu,	Foams,	Vaillon, J. Okajima, A. Komiya, S.	
			C. Ma	P. Kumar, F. Topin	Maruyama	
12:10	9154/FCV-F-326 Convection-		9371/NSM-H-326 Comparison of	9841/PMD-I-326 An Improved	8521/RAD-J-326 A Direct	8931/TEL-K-326 The Optimization
	Radiation Interaction in Eccentric		Turbulence Models in Simulating a	Capillary Bundle Model by Using	Numerical Simulation for Influence	of Thermoelectric Module Size in a
	Roltzmann and Meshless Method		Wall	Extracted from Pore Network	Radiative Heat Transfer between	System
	K. Luo, Z. Cao, H. Yi, H. Tan		F. Bode, K. Sodiavi, A. Meslem, I.	Model.	Two Films.	W. He, S. Wang, C. Lu, Y. Li, X.
			Nastase	X. Zhou, L. Jiang, L. Chen, Y. Liu,	Y. Chen, Y. Xuan	Zhang
				Y. Song, M. Mutailipu		-

14th, Thursday

Session 41 (08:20 - 10:20)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	PBL2 : Pool Boiling (2) Y. Saito & P. Stephan	TPN1 : Two-phase, Numerical Simulation (1) J. Cai & S. Yokobori	TDY1 : Thermodynamics (1) Y. Hagiwara & H. Herwig	HTE5 : Heat Transfer Enhancement (5) Y. Diao & K. Nakabe		CPM1 : Computational Methods (1) F. Liu & T. Tsukahara
08:20	9265/PBL-B1-411 Highly Subcooled Water Boiling: Some New Details of the Process, K. Khodakov, Y. Zeigarnik	8721/TPN-B2-411 Population Balance Modeling for Air-Water Bubbly Flow in a Vertical U-Bend, H. Zhu, X. Yang, Y. Huang, J. Tu, S. Jiang	9370/TDY-C1-411 A Simulation Study into the Thermodynamic Properties of Water-Alcohol Mixtures, J. Cannon, T. Kawaguchi, E. Okuno, J. Shiomi	9080/HTE-C2-411 Heat Transfer Performance of a Channel Flow with Aluminum Fiber Layers (Comparison with Aluminum Porous Foams), K. Imai, M. Yamamoto, M. Sakagami, M. Senda, K. Inaoka	IHTC Since 1951	9034/CPM-E-411 A Two-Dimensional Numerical Method for Incompressible Flow Problem Based on SIMPLER Algorithm and Quadtree Grid with Collocated Arrangement, W. You, Z. Li, W. Tao
08:40	9568/PBL-B1-412 Study on Nucleate Boiling Heat Transfer by Measuring Instantaneous Surface Temperature Distribution by Infrared Radiation Camera, Y. Koizumi, K. Takahashi	<u>9780/TPN-B2-412</u> Computational Studies of LNG Evaporation and Heat Diffusion through a LNG Cargo Tank Membrane, J. Lee, Y. Kim, S. Hwang	8636/TDY-C1-412 Prediction of Anisotropic Crystal-Melt Interfacial Free Energy of Sugar Alcohols through Molecular Simulations, H. Zhang, S. Nedea, C.C.M. Rindt, H.A. Zondag, D.M.J. Smeulders	10554/HTE-C2-412 Heat Transfer near Injection Hole by Shock and Boundary Layer Interaction in the Supersonic Flowfield, N. Lee, J. Song, J. Bae, Y. Kang, H. Ham, J. Bae, H. Cho		<u>9302/CPM-E-412</u> Different Approaches to FVM Method Fluid Flow and Heat Transfer Simulation Inside Thermosyphon, M. Lecki, G. Gorecki
09:00	9914/PBL-B1-413 Pore-Scale Experimental Study of Boiling in Porous Media, P. Sapin, P. Duru, F. Fichot, M. Prat, M. Quintard	8564/TPN-B2-413 Computational Fluid Dynamics Evaluation of the Multi-Nozzle Oil-Jet Lubrication for Rolling Bearings, W. Wu, J. Hu, S. Yuan, X. Li	8833/TDY-C1-413 Influence of Form and Thermal Properties of Granular Layer to Subcooled Liquid Boiling Dynamics in Impulse Heat Generation in the Wall, N. Zakharov, S. Karlov, B. Pokusaev	8562/HTE-C2-413 Non-Similar Heat Transfer Characteristics Associated with Nanofluid Forced Convection Cooling and Heating, W. Li, A. Nakayama		<u>9342/CPM-E-413</u> An HP-Adaptive Predictor-Corrector Split Projection Method for Turbulent Compressible Flow, X. Wang, D.B. Carrington, D.W. Pepper
09:20	9772/PBL-B1-414 Boiling Behaviors on a Vertical Surface in Saturated Pool Boiling at High Pressures, H. Sakashita	9543/TPN-B2-414 Numerical Simulation of Liquid-Gas Two-Phase Flow with Large Density Difference in Multi-Layered Sintered Wick by the Lattice Boltzmann Method, T. Yamaguchi, Q. Wan, Y. Yan, J. Hong	8230/TDY-C1-414 High Resolution Heat Transfer Measurements at the Three Phase Contact Line of a Moving Single Meniscus, S. Fischer, S. Batzdorf, T. Gambaryan-Roisman, P. Stephan	<u>8571/HTE-C2-414</u> Heat Transfer Optimization for Reducing Thermal and Flow Resistance, W. Liu, H. Jia, Z. Liu, J. Yang		9525/CPM-E-414 Thermal Hydraulic Modeling of Shell and Tube Heat Exchangers, J. Teixeira, A. Oliveira, S. Teixeira
09:40	9048/PBL-B1-415 Removal by Liquid Film on the Expansion of Dry Area on a Superheated Copper Wall, Y. Haramura		8349/TDY-C1-415 Numerical Determination of Autothermal Operation Limits for Beechwood Torrefaction Processes as a Function of Different Operating Parameters, A. Ohliger, R. Kneer	8689/HTE-C2-415 Flow Transport Characteristics in Pipe Flow Using Graphene-Oxide-Nanofluid, S. Torii, H. Yoshino		<u>9337/CPM-E-415</u> Dispersion of High Pressure Underexpanded Helium Jets into the Atmosphere, X. Li, D. Christopher
10:00			8515/TDY-C1-416 Notes on Singular Heat Radiation, R. Segev, J. Goddard	8801/HTE-C2-416 Heat Transfer Enhancement in Tangential Injection Induced Swirl Flows, G.R. Warrier, D. Lloyd, L. Yang, Y. Hu, V.K. Dhir, Y.S. Ju		

Session 41 (08:20 - 10:20)

14th, Thursday

Room F Room G Room		Room H	Room I	Room J	Room K	
	NCV1 : Natural Convection (1)	GTB : Gas Turbine	CND1 : Conduction (1)	PMD3 : Porous Media (3)	RAD3 : Radiation (3)	HPP1 : Heat Pipe (1)
08:20	D. Naylor & T. Tagawa 8947/NCV-F-411 Transition in a Natural Convection Boundary Layer, Y. Zhao, C. Lei, J. Patterson	Y. Oda & L. Xu 9600/GTB-G-411 Effect of Swirled Leakage Flow on Endwall Film-Cooling, M. Stinson, R. Goldstein, T. Simon, S. Fujimoto, C. Nakamata	G. Kikugawa & S. Mishra 9735/CND-H-411 Understanding of Non-Fourier Conduction Based on Thermon Gas Model, X. Shan, M. Wang	R. Bennacer & A. Nakayama <u>8706/PMD-I-411</u> <i>Numerical</i> <i>Investigation of Fluid Flow and</i> <i>Heat Transfer in Periodic Porous</i> <i>Lattice-Flame Materials,</i> S.G. Krishnan, K.K.Bodla, J.A. Weibel, S.V. Garimella	L. Dombrovsky & A. Sakurai 9563/RAD-J-411 Effects of Molecular Gas Radiation on Rayleigh-Bénard Convection in a 3D Cubical Cavity, L. Soucasse, Ph. Rivière, A. Soufiani	N. Nagai & J. Yulong 8985/HPP-K-411 Flow Visualisation in a Transparent Thermosyphon: Influence of Internal Pressure, K. Smith, R. Kempers, A. Robinson, S. Siedel
08:40	9339/NCV-F-412 Study on Free Convection Heat Transfer in Finned Tube Array, R. Katsuki, C. Iwaki, T. Shioyama, T. Yanazawa	8914/GTB-G-412 Effects of Surface Geometry and Blowing Ratio on Film Cooling Performance at Airfoil Trailing Edge Investigated by Using Large Eddy Simulation, A. Murata, E. Mori, K. Iwamoto	8466/CND-H-412 Accuracy of the First Eigenvalue of Heat Conduction Problems Calculated Through Tables and Explicit Approximate Expressions, S. Dalmas, L.F. Milanez	8987/PMD-I-412 An Optimization Study of Heat Transfer Enhancement Due to Jet Impingement over Porous Heat Sinks Using Lattice Boltzmann Method, S.K. Chinige, N. Ghanta, A. Pattamatta	9357/RAD-J-412 Numerical Study on Solar Reflection Performance of Cool Painting and the Optimization, S. Kinoshita, S. Nishimura, A. Yoshida	9031/HPP-K-412 Super-Thin Heat Pipe in Smartphone Application, T. Phan, M.S. Ahamed, T. Nguyen, M. Mochizuki, Y. Saito, S. Mochizuki
09:00	9527/NCV-F-413 Analysis of Heatfunction Boundary Conditions on Invariance of Heat Flow in Square Enclosures with Various Thermal Boundary Conditions, P. Biswal, T. Basak	8457/GTB-G-413 Effects of Ingestion on the Flow and Heat Transfer in a Rotor-Stator System, L. Wang, M. Wilson	9021/CND-H-413 Thermomass- Based General Law for Ballistic-Diffusive Heat Conduction in Nanostructures, B. Cao, Y. Hua	9590/PMD-I-413 Influence on Stress Jump Coefficient of Porous Structure and Flow Conditions, B. Chen, F. Liu, G. Zhang, Z. Liu	8315/RAD-J-413 Effect of Fractal Parameters on Absorption Coefficient of Soot Aggregates in the Electrostatic Limit, P. Swaminathan, Ph. Rivière, A. Soufiani	8842/HPP-K-413 Boiling Heat Transfer Enhancement of Double-Tube Heat Pipe for High Power Devices, T. Kato, M. Katsuta, K. Sugaya, R. Hotta
09:20	9258/NCV-F-414 Natural Convection around a Pulsating Line Heat Source, M. Jarrahi, MC. Duluc, Y. Fraigneau, G. Defresne	9249/GTB-G-414 Experimental and Numerical Study of Flow Structure and Liner Wall Temperature in Reverse Flow Combustor, X. Gao, F. Duan, S. Lim, M. Yip	9207/CND-H-414 Topology Optimisation for the Volume-to-Surface Problem in a Three-Dimensional Cubic Domain Using Conduction Cooling, F.H. Burger, J. Dirker, J.P. Meyer	9303/PMD-I-414 Analytical Prediction of the Transition Point to Weak Turbulent Convection in a Porous Layer Subject to Feedback Control, P. Vadasz	9143/RAD-J-414 Implementation of the SUN Model for Radiation Heat Transfer in Packed Pebble Bed Gas Cooled Reactors, P.G. Rousseau, C.G. du Toit, S. van der Walt	9124/HPP-K-414 Heat Pipe Applications in Cooling Nuclear Fuel, R. Singh, M. Mochizuki, T. Nguyen, Y. Saito
09:40	8776/NCV-F-415 Confinement- Induced Enhancements of Heat-Transfer Efficiency and Thermal Plume Coherency in Turbulent Thermal Convection, K. Xia, M. Kaczorowski, S. Huang, K. Chong	9553/GTB-G-415 Blade and Vane Leading Edge Fillet on Endwall Cooling in Linear Turbine Cascades, G. Mahmood, S. Acharya	9920/CND-H-415 An Application of the Generalized Least Squares Method to the Analysis of the Heat Transfer Process with Supplementary Data, A. Sciazko, Y. Komatsu, S. Kimijima, Z.S. Kolenda, J.S. Szmyd	9742/PMD-I-415 Experimental and Numerical Investigations of Supersonic Transpiration Cooling through Sintered Porous Flat Plates, Z. Huang, Y. Xiong, Y. Zhu, P. Jiang	9478/RAD-J-415 The Influence of Carbon Fiber Composite Material Structures on the Spectral Attenuation Properties of Thermal Radiation, M. Xie, Q. Ai, X. Xie, L. Yang, H. Tan	9619/HPP-K-415 Dynamics of Evaporation in a Single, Straight-Tube Pulsating Heat Pipe,. K. Okuyama, T. Ichikawa, S. Mori
10:00	10004/NCV-F-416 Interaction of Rayleigh - Benard Convection and Oscillatory Flows, M.K. Aktas, S. Cetindag	9584/GTB-G-416 Experimental and Computational Film Cooling with Backward Injection for Cylindrical and Fan-Shaped Holes, S. Li, A. Chen, W. Wang, J. Han				

14th, Thursday

Session 42 (10:30 - 12:30)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	PBL3 : Pool Boiling (3) L. Fan & H. Sakashita	TPN2 : Two-phase, Numerical Simulation (2) H. Arima & Y. J. Kim	TDY2 : Thermodynamics (2) T. Gambaryan-Roisman & T. Yamaguchi	HTE6 : Heat Transfer Enhancement (6) N. Shikazono & G. Warrier		CPM2 : Computational Methods (2) S. Satake & S. Teixeira
10:30	8680/PBL-B1-421 Characteristic Behaviors of Boiling Bubble Initiation Under High Pressure Conditions, S. Yokobori, K. Yasumi, S. Akiyama	9798/TPN-B2-421 Numerical Simulation of Condensing and Evaporating Annular Flows in Microchannels with Laminar and Turbulent Liquid Films, N. Antonsen, J.R. Thome	8482/TDY-C1-421 Loss Coefficients for Compressible Flows in Conduit Components under Different Thermal Boundary Conditions, B. Schmandt, H. Herwig	<u>9825/HTE-C2-421</u> Evaluation of Herringbone Wavy Fin Based Heat Exchanger for Heat Transfer Enhancement in Automobile Exhaust Energy Harvesting Systems, J. Athavale, J. Pandit, S. Ekkad, S. Huxtable	IHTC Since 1951	9797/CPM-E-421 Lattice Boltzmann Simulations for Anisotropic Crystal Growth of a Binary Mixture, A. Younsi, A. Cartalade, M. Quintard
10:50	8795/PBL-B1-422 The Influence of Single Bubble Growth and Bubble Coalescence on Boiling Heat Transfer, A. Sielaff, P. Stephan	8670/TPN-B2-422 Numerical Study of Water Droplet Parameters in Icing Tunnel Test, W. Dong, J. Zhu, M. Zheng, R. Wang	8583/TDY-C1-422 Energy Separation of Gases with Prandtl Numbers Unequal to Unity, A.I. Leont'ev, I.I. Vigdorovich	9969/HTE-C2-422 Natural Convec- tion in an Open-Ended Channel under Staggered Thermal Boundary Conditions. Application to the Con- trol of the Free Cooling in Photo- voltaic Doubleskin Facades, C. Ménézo, S. Giroux-Julien, V. Timchenko, M. Fossa		8580/CPM-E-422 Numerical Investigation of Heat Transfer in a Forced Flow of He II, C. Soulaine, M. Quintard, H. Allain, B. Baudouy ., R. van Weelderen
11:10	9102/PBL-B1-423 Nucleation Incipience on a Heated Surface: Effect of Pressure Oscillations, L. Leal, P. Lavieille, M. Miscevic, F. Topin, L. Tadrist	9133/TPN-B2-423 Numerical Simulation of Reactive Multiphase Flows in Porous Media Using Lattice Boltzmann Method, F. Xin, X. Li, M. Xu, X. Huai, Z. Cui	<u>9158/TDY-C1-423</u> Chimney- Enhanced Natural Convection in Honeycombs, X. Yang, J. Bai, H. Yan, T. Lu, T. Kim	8747/HTE-C2-423 Thermal and Hydraulic Characteristics of SCO ₂ in a Horizontal Tube at High Reynolds Number, K. Tanimizu, R. Sadr, D. Ranjan		10035/CPM-E-423 Hilbert Spectral Analysis of Oscillating Forced Convection in Curved Ducts, F. Liu
11:30	9404/PBL-B1-424 Experimental Study of Transport Phenomena at the Onset of Nucleate Boiling Using a Boilingmeter, M. Zamoum, B. Dubrac, F. Goepper, L. Tadrist, H. Combeau, M. Kessal	9595/TPN-B2-424 Modelling of Fundamental Transfer Processes in Crude-Oil Fouling, J. Yang, O. Matar, G. Hewitt, W. Zheng, P. Manchanda	9184/TDY-C1-424 Calculating and Assessing Complex Convective Heat Transfer Problems: The CFD-SLA Approach, C. Redecker, H. Herwig	8554/HTE-C2-424 Dynamic and Heat Transfer of Lobed Impinging Jets, D. Brouilliot, D. Lo Jacono		8982/CPM-E-424 1D and 3D Numerical Simulation of the Reactor Cavity Cooling System of a Very High Temperture Reactor, C.G. du Toit, P. Rousseau, J. Jun, JM. Noh
11:50	9320/PBL-B1-425 Effects of Pool Subcooling on Coalescence Heat Transfer and Bubble Dynamics, J. Bi, D.M. Christopher, X. Lin, X. Li	8692/TPN-B2-425 Numerical and Experimental Study of Slug Flow Dynamics in Inclined Pipes with Granular Layer, D. Khramtsov, D. Nekrasov, B. Pokusaev	9847/TDY-C1-425 Effect of the Fin Height on Unsteady Flows and Heat Transfer in a Differentially Heated Cavity, J. Ma, F. Xu	8864/HTE-C2-425 An Experimental Study of Heat Transfer in the Turn Region of a U-Bend Channel with Various Ribs, C. Wang, L. Wang, B. Sunden		9662/CPM-E-425 Regimes of Heating and Compression in Magneto-Inertial Fusion, V.V. Kuzenov, S.V. Ryzhkov
12:10			9966/TDY-C1-426 Numerical Study on Cooling Performance for Multi-Holes Steam Jet in the Internal Channel of a Hollow Turbine Blade, L. Xu, S. Zhang, W. Wang, J. Gao, T. Gao	8904/HTE-C2-426 Enhancement of Heat Transfer Performance by Using Sawtooth Fin Structure in the Multiport Microchannel Flat Tube, J. Zhang, Y. Diao, Y. Zhao, Y. Zhang		<u>9724/CPM-E-426</u> Oscillatory Instability of Natural Convection of Air in a Laterally Heated Cubic Box, A. Gelfgat

Session 42 (10:30 - 12:30)

14th, Thursday

	Room F	Room G	Room H	Room I	Room J	Room K
	NCV2 : Natural Convection (2)	NMM1 : Nano/Micro Scale	CND2 : Conduction (2)	PMD4 : Porous Media (4)	RAD4 : Radiation (4)	HPP2 : Heat Pipe (2)
	M. Akamatsu & M. C. Duluc	X. Luo & J. Shiomi	L. F. Milanez & T. Takano	T. Araki & J. Weibel	L. Liu & T. Makino	M. Marengo & H. Onishi
10:30	8506/NCV-F-421 Experimental and Analytical Investigation on Thermal Stratification under Natural Circulation Cooling, S. Kodama, I. Kataoka, K. Yoshida, T. Suga, K. Michii, T. Fujisaki	9485/NMM-G-421 Single-Walled 8973/CND-H-421 Efficient 8811/PMD-I-421 A Porous Media 9822/RAD-J-421 Carbon Nanotubes for Heterojunction Solar Cells, Coupling Procedures in Steady Approach for Analyzing a Vacuum Therma K. Cui, T. Chiba, S. Chiashi, E. M.P. Errera M.P. Errera Desalination Module, Estimate vs Theorem Y. Sano, A. Horibe, N. Haruki, A. Dombrovsky, I.V. Dombrovsky, I.V. Dombrovsky, I.V.		9822/RAD-J-421 Heat Transfer in Vacuum Thermal Insulation of Space Vehicles: An Experimental Estimate vs Theoretical Prediction, A.V. Nenarokomov, L.A. Dombrovsky, I.V. Krainova, O.M. Alifanov, S.A. Budnik	<u>9141/HPP-K-421</u> Investigation of Gravity Heat Pipe with Internal Helical Microfins in Different Sections, G. Xin, C. Zhang, W. Du, Y. Chen, L. Cheng	
10:50	8239/NCV-F-422 Interferometric Study of the Effect of Insect Screens on Free Convection at a Window Glazing, D. Zalcman, S.S.M. Foroushani, D. Naylor	8569/NMM-G-422 Thermal Performance of a Propilen Glycol /Alumina Nanofluid under Internal Developing Laminar Flow, P. Fariñas Alvariño, J.M. Sáiz Jabardo, J. García del Valle, A. Soto	9090/CND-H-422 Analysis of Heat Transfer in a 2-D Cylindrical Porous Medium, S.C. Mishra, S. Panigrahy	9774/PMD-I-422 Convective to Diffusive Contribution of Mass Transfer in Porous Building Materials through Peclet Number Evaluation, K. Abahri, R. Belarbi, R. Bennacer, B. Liu	8683/RAD-J-422 Effect of Structure and Transfer Function on Artificial Neural Networks Used in Radiation Thermometry for Steel, C. Wen, P. Fu	9125/HPP-K-422 Effect of Inclination Angle onto Heat Transport Characteristics of Bubble-Actuated Circulating Heat Pipe (Bach) Covering High-Temperature Region, Y. Ji, N. Nagai, K. Takano
11:10	8531/NCV-F-423 Conjugate Natural Convection in a Porous Three-Dimensional Enclosure with a Heat Source: A Comparison Study of Different Models, M. Sheremet, T. Trifonova	9607/NMM-G-423 Conductivity Measurement of Bare Carbon Nanotube Films Using the Photoacoustic Technique, T.L. Bougher, C.J. Vasquez, B.A. Cola	9932/CND-H-423 Prediction of Effective Thermal Conductivity of Sintered Porous Media with the Discrete Element Method, X. Ouyang, R. Xu, L. Zhang, B. Zhou, P. Jiang	9248/PMD-I-423 Discussion on Conditions of Local Thermal Non-Equilibrium Effect in Porous Media, H. Xu, L. Gong, S. Huang	9545/RAD-J-423 Enhancement of Ray Tracing Method for Radiative Heat Transfer: Application to EUI Space Instrument, L. Jacques, L. Masset, G. Kerschen	9076/HPP-K-423 Oscillation- Induced Heat Transportation in a Curved Heat Transpotation Pipe, S. Yuguchi, H. Kusaka, K. Shiratori, G. Tanaka
11:30	8499/NCV-F-424 Natural Convective Heat Transfer from an Inclined Isothermal Square Flat Element Mounted in a Flat Adiabatic Surrounding Surface, P.H. Oosthuizen	9063/NMM-G-424 Growth and Applications of Horizontally Aligned Single-Walled Carbon Nanotubes, S. Chiashi, T. Inoue, K. Otsuka, D. Hasegawa, S. Maruyama	9501/CND-H-424 Study of Thermal Conductivity in Nanoporous Thin Film and Nanocomposites, B. Fu, C. Bi, G. Tang	9347/PMD-I-424 Effect of Temperature and Porosity Change on Numerical Analysis of CO ₂ Absorption Behavior in Porous Solid Sorbent by Using the Unreacted-Core Model, S. Xu,T. Tanaka,T. Nakagaki	9531/RAD-J-424 Effect of Fractal-Like Aggregation on Radiative Properties and Specific Growth Rate of Chlorella, Z. He, H. Qi, Q. Chen, Y. Ren, L. Ruan	9442/HPP-K-424 An Investigation of Operating Limit for Oscillating Heat Pipes, Y. Ji, C. Chang, G. Li, H. Ma
11:50	9319/NCV-F-425 Interaction Effects between Surface Radiation and Sub-atmosphere Natural Convection in Multi-Heat Sources Enclosures, H. Wang, C. Sun, X. Xia, H. Tan	9642/NMM-G-425 Monitoring Heat Conduction in Nanostructures with Embedded Planar Defects, H. Han, Y. Kosevich, S. Volz	9506/CND-H-425 Improving Solidification Structure of Paraffin-Based Nanofluid by Surfactant and Ultrasound, L. Jia, Y. Chen, S. Lei, S. Mo, Z. Liu, X. Shao	9116/PMD-I-425 Structural Optimization of Porous Flow Fields to Improve Water Management Ability of PEFC, K. Suzuki, D. Sato, Y. Tabe, T. Chikahisa	9126/RAD-J-425 Measurement of Radiative Properties of Scattering and Absorbing Layered Media, T. Kono, J. Yamada	9476/HPP-K-425 Experimental Investigation of Ultrasonic Effect on a Nanofluid Oscillating Heat Pipe, N. Zhao, B. Fu, H. Ma
12:10	8292/NCV-F-426 Effect of Direct Liquid Cooling on Light Emitting Diode Local Hot Spots: Natural Convection Immersion Cooling, E. Tamdogan, M. Arik	9618/NMM-G-426 Electrokinetic Focusing of Colloidal Particles by Joule Heating Induced Temperature Gradient in a Convergent-Divergent Microfluidic Structure, Z. Ge, C. Yang		9438/PMD-I-426 Tortuosity in Porous Anode Electrode of Solid Oxide Fuel Cells Estimated from Saturation Currents and a Mass Transport Model in Comparison with a Real Micro-Structure, G. Brus, K. Miyawaki, H. Iwai, M. Saito, H. Yoshida	8901/RAD-J-426 Measurement and Prediction of Absorbed Irradiating Energy Distribution in Narrow Channel of Desiccant Rotor, J. Li, Y. Hamamoto, H. Mori	9208/HPP-K-426 Effects of Tube Diameter on Internal Flow Patterns and Heat Transport Performance of Parallel-Tube Heat Transport Device, K. Abiko, A. Murata, H. Saito, K. Iwamoto

15th, Friday

Session 51 (08:40 - 10:40)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	PBL4 : Pool Boiling (4) Y. Koizumi & G. Ribatski	TPS : Two-phase, Spray/Droplet M. Osakabe & F. Vera-Garcia	TDY3 : Thermodynamics (3) S. Fischer & Y. Miyamoto	HTE7 : Heat Transfer Enhancement (7) W. Liu & S. Torii	MCV : Mixed Convection T. Kawanami & J. Teixeira	
08:40	9471/PBL-B1-511 Interfacial Instability on Vapor Bubble Exposed to Subcooled Pool, I. Ueno, T. Saiki, T. Osawa, J. Ando, T. Kaneko, C. Hong	8860/TPS-B2-511 Kinetic Modelling of Diesel Fuel Droplet Heating and Evaporation: Effects of Inelastic Collisions and Three Components, S. Sazhin, I. Shishkova	<u>9827/TDY-C1-511</u> Heat Transfer in Supersonic Flow over Blunt Body with Resonator of Hartmann Whistle Type, N. Palchekovskaya	<u>8491/HTE-C2-511</u> Entransy Balance Equation for Heat Transfer with Phase Change, W. Wang, X. Cheng, X. Liang	<u>9081/MCV-D-511</u> Mixed Convection Heat Transfer in a Pressurizing Confined-Jet Flow Field, M. Heath, P. Woodfield, W. Hall, M. Monde	IHTC Since 1951
09:00	9659/PBL-B1-512 A Comparison Study of State-of-the-Art Experimental and Numerical Simulation Results Associated with Nucleate Boiling of a Single Bubble, S. Jung, Y. Ose, H. Kim, T. Kunugi	9815/TPS-B2-512 Evaporation of Bi-Component Droplets in a Highly Turbulent Channel Flow, A. Jean, R. Bazile, B. Ferret	9243/TDY-C1-512 Non-Equilibrium Electron Gas Thermodynamic Cycle with Nano Features, K. Yazawa, A. Shakouri	<u>9231/ HTE-C2-512</u> Heat Transfer Measurements in a Swirl Chamber Using the Transient Liquid Crystal Technique, C. Biegger, B. Weigand	9524/MCV-D-512 Numerical Study on Entropy Generation for Mixed Convection in Square Enclosures for Isothermally and Non-Isothermally Hot Bottom Wall, M. Roy, T. Basak, S. Roy	
09:20	8854/PBL-B1-513 Enhanced Boiling Heat Transfer on Super-Hydrophilic Surface with Porous Copper Layer, P. Xu, Q. Li, Y. Xuan	<u>9328/TPS-B2-513</u> Numerical Simulation of Heat Transfer and Gas Dynamics in Warm Spray, Y. Shan, F. Gong, C. Shen, L. Li, M. Lu	8937/TDY-C1-513 The Applied Condition of Lumped Parameter Method for Finite Mass Transfer Duration, J. Cao, C. Liu, Y. Zhang	8669/HTE-C2-513 Impingement Cooling with Spent Flow in the Blade Leading Edge Using Double Swirl Chambers, G. Lin, K. Kusterer, D. Bohn, T. Sugimoto, R. Tanaka, M. Kazari	9297/MCV-D-513 Experimental Investigation on Mixed Convection in Horizontal Channels Heated Below and Partially Filled with Aluminium Foam, B. Buonomo, O. Manca, L. Marinelli, S. Nardini	
09:40	9224/PBL-B1-514 Enhancement of Heat Transfer at Transition and Film Boiling of Nitrogen on Spheres with Dimples and Low Conductivity Coating, V. Zhukov, Y. Kuzma-Kichta, V. Lenkov, A. Lavrikov, M. Shustov	8593/TPS-B2-514 The Effect of Pulses Frequency on Flow and Heat Transfer Due to Intermittent Impinging Mist Jets, M. Pakhomov, V.I. Terekhov	9373/TDY-C1-514 A Study of Macroscopic Physical Meaning of Entropy, J. Wu	9965/HTE-C2-514 Experimental Study and Prediction of Film Cooling Effectiveness for a Guide Vane in Heavy Gas Turbine, W. Wang, J. Gao, L. Xu, X. Shi	8059/MCV-D-514 Experimental Investigation of Mixed Convection Heat Transfer from Heated Vertical Rectangular Fin Array, J. Shete, N. Sane, S. Pavithran	
10:00	8941/PBL-B1-515 Improvement of Nucleate Boiling Heat Transfer Characteristics by Using Immiscible Mixtures, S. Kita, S. Onishi, Y. Fukuyama, H. Ohta	9060/TPS-B2-515 Experimental Study on Heat Transfer Characteristics of High-Velocity Circular Jet Impingement Boiling on the Nano-Characteristic Stagnation Zone, Y. Li, Y. Chen, Z. Liu	9414/TDY-C1-515 Implementation of Entransy Analysis for Heat Transfer Optimization and System Design, M. Sun, X. Zhang	8319/HTE-C2-515 An Investigation into Momentum and Temperature Fields of a Meso-Scale Slot Synthetic Jet for a Small Jet-to-Surface Spacing, O. Ghaffari, B. Dogruoz, M. Arik	<u>9165/MCV-D-515</u> Energy Conservative Dissipative Particle Dynamics Simulation of Mixed Convection in Complex Geometries with Moving Surface, Z. Cao, K. Luo, H. Yi, H. Tan	
10:20	8619/PBL-B1-516 Pool Boiling Heat Transfer Enhancement by γ-Al ₂ O ₃ /FC-72 Nanofluids on a Smooth Surface, X. Kong, J. Wei, J. Ding, Y. Zhang		8483/TDY-C1-516 Internal Symmetries, Fundamental Invariants and Convective Heat Transfer from a Rotating Disc, C. Helcig, S. aus der Wiesche, I.V. Shevchuk	8667/HTE-C2-516 Transient Heat Transfer for a Twisted Plate in Forced Convection Flow of Helium Gas, Q. Liu, Z. Zhao, K. Fukuda		

Session 51 (08:40 - 10:40)

15th, Friday

	Room F	Room G	Room H	Room I	Room J	Room K
	NCV3 : Natural Convection (3)	NMM2 : Nano/Micro Scale Measurement and Simulation (2)	CND3 : Conduction (3)	PMD5 : Porous Media (5)	SAT : Spray and Atomization	TMG1 : Thermal Management
	P. Biswal & I. Kataoka	H. Daiguji & K. Termentzidis	D. Maillet & H. Nakamura	P. Jiang & K. Okazaki	S. Inoue & P. E. Santangelo	L. K. Choong & T. Tomimura
08:40	8565/NCV-F-511 Large-Eddv	8732/NMM-G-511 The Effect of	8419/CND-H-511 Determination of	9617/PMD-I-511 Influence of	8859/SAT-J-511 Experimental and	8847/TMG-K-511 Thermal
	Simulations of Plumes with and	Inner Surface Roughness and	Thermal Contact Resistance	Porous Cathode Microstructure on	Theoretical Study on the Thermal	Performance of a Multi-Channel
	without Turbulent Diffusion Flames,	Heating on Friction Factor in	Coefficients through	Overpotential Characteristics of	Characteristics of Flashing Spray	Heat Exchanger-Reactor,
	H. Suto, Y. Hattori	Horizontal Mini-Tubes, L. Tam, H.	Thermo-Mechanical Simulation,	Solid Oxide Fuel Cells,	Cooling Using R404a,	X. Guo, Y. Fan, L. Luo
		Tam, A.J. Ghajar, W. Ng, C. Wu	Y. Frekers, S. Vieler, S. van Buren,	K. Miyoshi, H. Iwai, M. Kishimoto,	Z. Zhou, B. Chen, G. Wang	
			M. Deppermann, R. Kneer	W. Matsumoto, M. Saito, H.		
				Yoshida		
09:00	9046/NCV-F-512 Three-	8543/NMM-G-512 Temperature	9330/CND-H-512 High Thermal	8665/PMD-I-512 Numerical	9805/SAT-J-512 Experimental	8938/TMG-K-512 Startup
	Dimensional Computational Study	Dependent Thermal Transport	Conductivity Performance of	Investigation of the Flow and	Study on Heat Transfer	Characteristic of Loop Heat Pipes
	of Natural Convection in a Non-	across the Interfaces between	Compressed Graphene Sheet	Temperature Uniformity in the	Characteristics of Spray Cooling,	for Alpha Magnetic Spectrometer
	Uniformly Heated Vertical Open-	CNT Array and Adjacent Layers,	Layers,	Reactor Core of a Pebble Bed	NI LIU, J. Zhao	Cryocoolers,
	Ended Channel, O.A. Tkachenko,	Z. Wang, Y. Wa, J. Liang, D. Tang	Y. Fu, X. Wang, D. Mo, S. Lu	HIGR Using Porous Media		N. Wang, Z. Cul, F. Luo, L. Cheng
	S. TRachenko, V. Timchenko, J.A. Poizos, G. Voob, G. do Vabl Davis			$X \downarrow i \cap M$ in $X \downarrow W \downarrow S \downarrow i \downarrow$		
09.20	9291/NCV-E-513 Comparative	9503/NMM-G-513 Behaviors of	8596/CND-H-513 Study of	8763/PMD-I-513 An Investigation	9821/SAT- 1-513 Experimental	9354/TMG-K-513 Preliminan
00.20	Study of Numerical Simulations of	Gas Flow in Tree-Shaped	Thermal Conductance in a	of Anisotropic Structure of	Investigation of Enhanced Sprav	Experimental Study of Start-Up
	a 2D Buovancy-Driven Flow in a	Microchannel Networks.	Strip-Roll System.	Wood-Derived Char Using X-Ray	Cooling on Nano- and Hybrid	Behavior in Nitrated Gravity Heat
	Vertical Channel Asymmetrically	Z. Deng, Y. Chen, C. Zhang	JM. Buchlin, M. Delsipée, Ph.	CT and Effect of Particle Aspect	Micro/Nano-Structured Surfaces,	Pipe,
	Heated with or without External	5, , 5	Planguart, M. Renard	Ratio on its Gasification Reactivity,	J. Chen, Z. Zhang, P. Jiang	Y. Wu, Q. Meng, Y. Xiong, S. Liu,
	Domain, C. Garnier, A. Sergent, Y.		•	T. Pattanotai, R. Nakano, H.		W. Cui, C. Ma, D. Li
	Fraigneau, P. Le Quere			Watanabe, K. Okazaki		
09:40	8624/NCV-F-514 A Numerical	9453/NMM-G-514 Numerical	8758/CND-H-514 The Influence of	9837/PMD-I-514 Surface Charge	9481/SAT-J-514 Thermal	9120/TMG-K-514 Fuel Cell
	Study of g-Jitter Effects in	Study of Ethanol Reforming in	Deposited Metal Material	Effects on Reactive Transports in	Behaviors of Droplet-Substrate in	Co-Generation System with Loop
	Cubic-Cavity Convection in Low	Micro-Channels,	Parameters on the Heat Transfer	Microporous Media,	Thermal Spray New Applications,	Heat Pipe Based Thermal Control,
	Gravity,	S. Roychowdhury, S.K. Das, T.	Process and Fluid Dynamics in the	L. Zhang, M. Wang	G. Wei, L. Zheng, C. Zhao, S.	R. Singh, M. Mochizuki, Y. Saito, T.
	K. Tatasumoto, H. Tanigawa, K.	Sundararajan	Welding Pool,		Sampath	Nguyen, Z. Guo, M. Ohashi, T.
	Hirata		L. Iong, J. Gu, S. Yin, L. Wang,			Nguyen, E.B. Haghighi, V.
10.00	9053/NCV-E-515 Motural	8016/NIMM-C-515 The Flow	3.Dal	0073/PMD-L515 Thormal	8077/SAT 1-515 The Effect of	9656/TMC-K-515 An Exportmental
10.00	Convection in an Inclined	Besistance and Heat Transfer	Model Adjacent Temperature	Entrance Effects in a	Liquid Mass Flow Pate on Heat	Analysis of an Open Loop
	Differentially Heated Square	Characteristics of Micro Pin-Fins	Profile Interactions	Thermoscoustic Stacked Screen	Transfer for an Air-Water Atomizing	Pulsating Heat Pine Operating with
	Cavity	with Different Cross-Section	L Desgrosseilliers D Groulx M A	Regenerator	Mist let	a Dielectric Working Fluid for
	S. Armfield, M. Kirkpatrick, N.	Shapes.	White	S. Bühler, D. Wilcox, J. Oosterhuis.	C. Quinn, D. Murray, T. Persoons	Embedded Power Electronic
	Williamson, W. Lin	Z. Liu, N. Guan, C. Zhang, G. Jiang		T. van der Meer		Applications,
						D. Kearney, O. Suleman, J. Griffin
10:20	9747/NCV-F-516 Natural		8444/CND-H-516 Thermal			9178/TMG-K-516 Experimental
	Convection in an Open Vertical		Protection Design for Flight Data			and Theoretical Study of Steady
	Channel with Heated Walls at high		Recorders,			Non-Fourier Heat Conduction in
	Rayleigh Number,		R. Amin Rana, R. Li			Free-Standing Gold Nanofilm,
	C. Daverat, Y. Li, H. Pabiou, C.					H. Wang, X. Zhang, Z. Guo
	Ménézo, S. Xin					

15th, Friday

Session 52 (12:50 - 14:50)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	PBL5 : Pool Boiling (5) C. Colin & M. Ozawa	TPM1 : Two-phase/Multiphase Flow (1) T. Ami & C. Y. Yang	CNV1 : Convection (1) S. Anouar & K. Kobayashi	HTE8 : Heat Transfer Enhancement (8) K. Tatsumi & V. Timchenko		
12:50	8441/PBL-B1-521 Stability and Mode Transition of Boiling on a Flat Surface, J. Lu, J. Ding	8955/TPM-B2-521 R1234yf Heat Transfer Coefficient during Condensation in a Mini-Channel Multiport Tube, A. Lopez-Belchi, J.R. García-Cascales, F. Vera-García, F. Illán-Gómez	9942/CNV-C1-521 Heat Transfer Performance of Finless Heat Exchanger Using Airfoil-Shaped Tubes with Extended Leading or Trailing Edge Section, H. Onishi, A. Yamamoto, Y. Tada, A. Takimoto	8426/HTE-C2-521 Heat Transfer Analysis of Aluminum Honeycomb Panels Incorporating Microencapsulated PCM, C. Lai, S. Hokoi	IHTC Since 1951	IHTC Since 1951
13:10	9511/PBL-B1-522 Boiling Heat Transfer Characteristics and Film Boiling Collapse Temperature through the Two-Dimensional Temperature Field Measurement, H. Ohtake, K. Hasegawa	8561/TPM-B2-522 Flow Condensation Heat Transfer on Engineered Surfaces, C. Yao, J. Alvarado, C. Marsh, B. Jones, M. Collins	9230/CNV-C1-522 Modified Endwall Fluid Flow in a Dimpled Pin Fin Array for Heat Transfer Enhancement, S. Roux, G. Mahmood, J.P. Meyer	9952/HTE-C2-522 Vortex Heat Transfer Enhancement in Dimpled Channels, A.I. Leontiev, S. Isaev, N. Kornev, Y. Chudnovsky, E. Hassel		
13:30	10081/PBL-B1-523 Effects of Porous SIC Deposition and High Thermal Conductive Graphene Layer on Critical Heat Flux, H. Seo, I. Bang	10072/TPM-B2-523 Gallium Melting in a Rectangular Box, O. Ben-David, A. Levy, B. Mikhailovich, A. Azulay	8698/CNV-C1-523 Heat Transfer and Pressure Drop of Serrated Finned Tube Banks in Forced Convection, A. Yamada, H. Nakaharai, S. Goto, M. Oda	8765/HTE-C2-523 A Numerical- Experimental Study of Heat Transfer Enhancement Using Unconfined Steady and Pulsating Turbulent Air Jet Impingement, S. Alimohammadi, T. Persoons, D.B. Murray		
13:50	8856/PBL-B1-524 Boiling on an Isolated Nucleation Site Close to CHF Conditions, O. Kannengieser, W. Bergez, C. Colin	8609/TPM-B2-524 Turbulent Mass Transfer Model to Predict Wax Deposition in Multiphase Flow in Pipelines, F. Brum, S. Stuckenbruck, A. Nieckele	8338/CNV-C1-524 The Influence of Surface Roughness on Heat Transfer in the Transitional Flow Regime, M. Everts, S. Ayres, F. Mulock Houwer, C. Vanderwagen, N.M. Kotze, J.P. Meyer	8983/HTE-C2-524 Applying Phase Separation of a Solvent System with a Lower Critical Solution Temperature for Enhancement of Cooling Rates by Forced and Free Convection, A. Ullmann, I. Lipstein, N. Brauner		
14:10	9423/PBL-B1-525 Effect of Kelvin-Helmholtz Instability on CHF for Thin Flat Plate Heater, J. Lee, W. Lee	<u>9066/TPM-B2-525</u> Numerical Study of Slug Flow Heat Transfer in Microchannels, T. Bandara, S.C.P. Cheung, G. Rosengarten	9092/CNV-C1-525 High-Order Numerical Implementation of Surface Radiation for the Coupling with Natural Convection in an Air-Filled Square Cavity, R. Knikker, S. Xin, R. Dai	<u>9271/HTE-C2-525</u> Unravelling Convective Heat Transfer in the Rotated Arc Mixer, M. Speetjens, Ö. Baskan, G. Metcalfe, H. Clercx		
14:30	9592/PBL-B1-526 Crisis in Pool Boiling: Alternative to Hydrodynamic Approach, V.V. Yagov	<u>9192/TPM-B2-526</u> Irreversibility Analysis of an Evaporator for Use in a Micro-Refrigeration Cycle, G. Türkakar, T. Okutucu-Özyurt				

Session 52 (12:50 - 14:50)

15th, Friday

	Room F	Room G	Room H	Room I	Room J	Room K
	OPT : Optimal Control/Theory	NMM3 : Nano/Micro Scale Measurement and Simulation (3)	CND4 : Conduction (4)	PMD6 : Porous Media (6)	CMB1 : Combustion (1)	TMG2 : Thermal Management (2)
12:50	T. Hatakeyama & Z. Li <u>9477/OPT-F-521</u> Heat Conduction Optimization of Anisotropic Composite Material Using Simulated Annealing Algorithm, C. Yuan, L. Li, X. Luo	W. Ma & K. Takahashi 9459/NMM-G-521 Investigation of Thermal Resistance and Heat Conduction at α-Quartz-Liquid Alkane Interfaces Using Non- equilibrium Molecular Dynamics Simulations, H.K. Chilukoti, G. Kikugawa, M. Shibabara, T. Ohara	D. Groulx & S. Kimijima 9137/CND-H-521 Experimental Investigation on Unsteady Conjugate Heat Transfer Caused by Flow Turbulence, H. Nakamura, N. Shiibara, S. Yamada	N. Haruki & P. Vadasz <u>8742/PMD-I-521</u> <i>A Mathematical</i> <i>Model for a Boiling Process of</i> <i>Food Stuff Based on the Porous</i> <i>Media Theory</i> , T. Yoshinaga, T. Hara	Y. Deguchi & Y. Fukuyama <u>8589/CMB-J-521</u> Effects of Local Flame Displacement Velocity on Turbulent Burning Velocity for Stoichiometric Hydrogen-Oxygen- Dilution Gas Mixtures, M. Nakahara, F. Abe, K. Tokunaga	I. Satoh & J. Shi 8553/TMG-K-521 Effect of Electrode Configuration on the Heat Transfer Performance of a Concentrated Heat Source, C. Chen, I. Chen, C. Wang
13:10	9670/OPT-F-522 Adjoint-Based Optimum Thermal Control of Pulsed Laser Diodes, K. Morimoto, Y. Suzuki	9136/NMM-G-522 Gas Molecular Momentum Exchange Characteristics in Nanopores, Q. Liu, Z. Chai	9556/CND-H-522 Conjugate Cooling of Protruding Heaters in a One Side Closed Duct by Impinging Flow, I. de Marchi Neto, C. Altemani	9730/PMD-I-522 Direct-Inverse Analysis of Heat Transfer in Micro-Models of Porous Media, C.P. Naveira-Cotta	9097/CMB-J-522 Hydrogen Combustion in the Turbulent Boundary Layer on a Permeable Surface, V. Lukashov, V. Terekhov	8807/TMG-K-522 Thermal Contact Resistance of Gamma-Irradiated Metallic Foil and Carbon Nanotube Thermal Interface Materials, R.A. Sayer, S.L. Hodson, T.P. Koehler, S.E. Swanson, T.S. Fisher
13:30	8602/OPT-F-523 Virtual Distribution and Mixing Entransy Analysis Method, X. Qian, Z. Li, Z. Li, Z. He	9429/NMM-G-523 Evaporation Dynamics of Microdroplets, M. Matsumoto, J. Tatsumi, M. Hosoda	9383/CND-H-523 Thermal Management Characteristics of Lithium-Ion Batteries According to the Arrangement, H. Lee, H. Son, I. Park	8848/PMD-I-523 Modelling Heat and Mass Transfer in Porous Material during Pyrolysis Using Operator Splitting and Dimensionless Analysis, J. Maes, A. Muggeridge, M. Jackson, M. Quintard, A. Lapene	8744/CMB-J-523 Effect of Ambient Pressure on Soot Formation in Oxy-Fuel Spray Jet Flame, T. Kitano, J. Nishio, R. Kurose, S. Komori	8824/TMG-K-523 Experimental Investigation of Thermal Performance of Phase Change Material Based Composite Heat Sink with Discrete Heat Sources, Srikanth R., C. Balaji
13:50	9018/OPT-F-524 Multi-Objective Optimization of Vortex Generators Position and Angles in Fin-Tube Compact Heat Exchanger at Low Reynolds Number Using Neural Network and Genetic Algorithm, L. Salviano, D. Dezan, J. Yanagihara	9391/NMM-G-524 Heat Transfer across a Confined Thin Film with Structural or Mass Disorder: A Molecular Dynamics Study, C. Shao, H. Bao	9253/CND-H-524 Heat Transfer Analysis in Human Skin Subjected to Flash Fire: Investigation of Dual Phase Lag Phenomenon, U. Raj, P. Talukdar, A. Das, A. Samy	9108/PMD-I-524 Towards a General Spatial Averaging Procedure for Multi-Scale Flow Modeling in Heat Transfer Devices with Repetitive Fin Structures, G. Buckinx, M. Baelmans	9464/CMB-J-524 Role of CO ₂ in the Soot Formation and Reduction Mechanisms in CH ₄ Flat Flame Doped with Toluene under O ₂ /CO ₂ Environments, H. Watanabe, S. Sugai, K. Okazaki	9032/TMG-K-524 Study on Heat Transfer Characteristics of Miniature/Micro Pins, N. Matsumoto, T. Tomimura, Y. Koito
14:10	8411/OPT-F-525 Study on Model Predictive Control to Minimize Temperature Change at Multi Positions in Vertical Plate with Varying Heat Generation, S. Hirasawa, T. Kawanami, K. Shirai	9000/NMM-G-525 Kinetic Study of Li ₂ SO ₄ .H ₂ O Dehydration Using Microscopy and Modeling, S. Lan, H. Zondag, C. Rindt	9444/CND-H-525 Numerical Simulation on Coupling of Heat Conduction and Curing of Polymer Composite with Finite Volume Method, Y. Yu, P. Ming, Y. Jiao, X. Zhang	9217/PMD-I-525 Simulation of Multiphase Flow and Heat Transfer in Porous Media Using Lattice Boltzmann Method, D. Wang, J. Shen, Z. Liu, W. Liu	<u>9830/CMB-J-525</u> Relaxation Phenomena in Reaction-Diffusion Processes, J. Ramos	9071/TMG-K-525 Analysis of Space Environmental and ISS Parameters on the Thermal Behavior of AMS, Z. Cui, K. Wang, N. Wang, J. Song, Q. Sun, L. Cheng
14:30	9168/OPT-F-526 Numerical Topology Optimization of Heat Sinks, T.V. Oevelen, M. Baelmans	9418/NMM-G-526 MD Simulation on Cryogenic Sublimation Dynamics of Dry Ice Nanoparticles, Y. Chen, L. Chen, X. Zhang	8813/CND-H-526 The Mean Free Path of Gas Molecules in Confined Nano-Porous Structures, G. Wei, L. Wang, X. Du, Y. Yang		9466/CMB-J-526 Alternating Currents Enhanced PAHs Formation in Nonpremixed Jet Flames, Y. Xiong, M. Cha, S. Chung	9461/TMG-K-526 Characterization of Valveless Piezoelectrically- Actuated Micropumps with Novel Diffuser Elements, L. Ehrlich, J. Punch, N. Jeffers, J. Stafford

15th, Friday

Session 53 (15:10 - 17:10)

	Room B1	Room B2	Room C1	Room C2	Room D	Room E
	PBL6 : Pool Boiling (6) I. C. Bang & K. Suzuki	TPM2 : Two-phase/Multiphase Flow (2) H. Nagano & S. Sazhin	CNV2 : Convection (2) K. Ichimiya & H. Pabiou	HTE9 : Heat Transfer Enhancement (9) T. Kawaguchi & A. Ullmann		
15:10	8964/PBL-B1-531 Enhancement of Nucleate Pool Boiling Heat Transfer Using Water on Titanium Oxide and Silicon Oxide Surface, L. Fan, J. Li, D. Li, L. Zhang, Z. Yu, Y. Hu	8793/TPM-B2-531 Regimes of Nonisothermal Scavenging of Soluble Gaseous Pollutants by Rain in the Atmosphere with Non- Uniform Concentration and Temperature Distributions, T. Elperin, A. Fominykh, B. Krasovitov	9209/CNV-C1-531 Turbulent Thermal Convection in an Enclosure with Differently Inclined Horizontal Wall: A LES study, S. Kenjereš	9839/HTE-C2-531 Effect of Surface Orientation on the Rewetting Phenomena during Jet Impingement Cooling, A. Chitranjan, R. Kumar, A. Gupta, B. Chatterjee	IHTC Since 1951	IHTC Since 1951
15:30	9632/PBL-B1-532 Enhancement of Nucleate Pool Boiling Heat Transfer Using Water on Titanium Oxide and Silicon Oxide Surface, S. Das, S. Bhaumik	8935/TPM-B2-532 Experimental Study on the Temperature and Pressure Distribution of Steam Jet in Subcooled Water Flow in a Restricted Channel, X. Zong, T. Li, X. Yang, W. Han, J. Liu, J. Yan	9593/CNV-C1-532 Modeling the Thermal Environment in an Operating Room, S. Teixeira, N. Rodrigues, A. Miguel, R. Oliveira, J. Teixeira, J. Baptista	9448/HTE-C2-532 Carbon Nanotubes as Thermal Interface Material Enhanced with Liquid Metal Alloy, Y. Ji, G. Li, C. Chang, Y. Sun, H. Ma		
15:50	9551/PBL-B1-533 Modeling of Boiling Heat Transfer from Microstructured Surfaces, A. Ustinov, J. Mitrovic	<u>9113/TPM-B2-533</u> Numerical Investigation of Adiabatic Growth and Detachment of Gas/Vapor Bubbles Injected from a Submerged Orifice at Various Surface Inclinations, A. Georgoulas, M. Marengo	8429/CNV-C1-533 Fluid Flow and Heat Transfer in Microchannel Heat Sinks with Zigzag Longitudinal Fins, G. Davaa, O. Jambal, Y. Jaluria	8700/HTE-C2-533 Application of Heat Transfer Technology with Phase Change Inhibited to Integrated Heat Deriving and Radiating Systems, S. Lee, B. Wu		
16:10	9004/PBL-B1-534 Study of the Combined Effects of Liquid Properties and Surface Micropatterning on Pool Boiling Heat Transfer, E. Teodori, A. Moita, A. Moreira	9456/TPM-B2-534 Melting, Solidification and Coalescence of Metallic Particles Invoked by Laser Heating, R. Dayal, T. Gambaryan-Roisman	<u>9355/CNV-C1-534</u> Study on Period Flow and Heat Transfer Characteristics for Backward-Facing Step in Transition Flow, M. Zhong, S. Zou, Y. Yuan, G. Xi	9148/HTE-C2-534 Geometric Optimisation of Multi-Layered Microchannel Heat Sink with Different Flow Arrangements, O.O. Adewumi, T. Bello-Ochende, J.P. Meyer		
16:30	9044/PBL-B1-535 An Experimental Study of Carbon Nanotube Coatings for Pool Boiling Heat Transfer Enhancement, J. Ho, K. Leong, C. Yang, I. Pranoto			8244/HTE-C2-535 Microscopic Mechanism of Cavitation Enhanced Heat Transfer: A Modeling Study, B. Liu, J. Cai, X. Huai		
16:50	8805/PBL-B1-536 Influence of Gap Size on Boiling and Condensation Co-Existing Phase Change Heat Transfer in Small Confined Space, G. Zhang, Z. Liu, L. Wang, L. Huang			8900/HTE-C2-536 Influence of Several Parameters on Heat Storage and Release Enhancement Behavior of Latent Heat Storage Paraffin with Aluminum Fiber Materials, N. Haruki, A. Horibe, Y. Sano, K. Hachiya		

Session 53 (15:10 - 17:10)

15th, Friday

	Room F	Room G	Room H	Room I	Room J	Room K
	NMT : New Materials	NMM4 : Nano/Micro Scale Measurement and Simulation (4)	FLM : Film	PMD7 : Porous Media (7)	CMB2 : Combustion (2)	TMG3 : Thermal Management (3)
	S. Maruyama & S. Volz	S. Maruyama & M. Shibahara	K. Hanamura & A. Komiya	G. Inoue & T. van der Meer	J. Ramos & H. Watanabe	K. Morimoto & R. Sayer
15:10	8664/NMT-F-531 Enhanced Thermal Conductivity of Epoxy Composites with Hybrid Carbon-Based Functional Materials and Nano-Copper Particles, P. Zhang, Q. Li, Y. Xuan	9922/NMM-G-531 Adsorption/ Desorption and Transport of Water in Two-Dimensional Hexagonal Mesoporous Silica, H. Daiguji, K. Yamashita, H. Yanagihara, A. Endo	9254/FLM-H-531 Thin Film Evaporation in Microchannel Membrane for Solar Vapor Generation, A.A. Alsheghri, T. Zhang	<u>9359/PMD-I-531</u> CO ₂ Trapping Phenomena in Porous Media of Geological Storage by Lattice Boltzmann Method, S. Uemura, A. Noda, S. Tsushima, S. Hirai	9164/CMB-J-531 A Numerical Study on the Combustion and Heat Transfer Characteristics of a Spark Ignited Engine Applying Heat Insulation Coatings to the Combus- tion Chamber Wall Surface, A. Kikusato, J. Kusaka, Y. Daisho	8886/TMG-K-531 Solar PV Passive Temperature Control Using Phase Change Materials, D. Groulx, P.H. Biwole
15:30	9153/NMT-F-532 Radiative	9179/NMM-G-532 Series Study on	8899/FLM-H-532 Measurement of	8734/PMD-I-532 Numerical Study	9980/CMB-J-532 On Heat	9200/TMG-K-532 Photonic
	Properties of a Nanofluid Mixture, J. Eggers, S. Kabelac	the Thermal Transport Properties of Nanofilm by Applying Transient Thermoreflectance Method, W. Ma, X. Zhang, K. Kubo, M. Kohno, Y. Takata, T. Ikuta, K. Takahashi	Liquid Film Thickness Formed between Colliding Twin Bubbles during Coalescence Process, T. Morokuma, Y. Utaka	of Physical Characteristic of Porous Media Containing Methane Hydrate Using Pore Network Model, J. Wang, Y. Song, J. Zhao, D. Liu, L. Yang, Z. Zhu, X. Chen	Transfer in the Stabilization Zone of an Attached Methane Flame in Air Coflow, S. Lamige, C. Galizzi, M. Kühni, K.M. Lyons, F. André, D. Escudié	Structures Based Thermal Rectification: Toward Tunable Radiative Thermal Rectifiers, E. Nefzaoui, Y. Ezzahri, K. Joulain, J. Drevillon
15:50	8890/NMT-F-533 Thermal and Electromagnetic Modeling of a	8343/NMM-G-533 Thermal Conductivity of Amorphous/	<u>9537/FLM-H-533</u> Evaporation, Dynamics and Crisis Phenomena	9025/PMD-I-533 Numerical Modeling of Three Dimensional	<u>9417/CMB-J-533</u> CFD Analysis of Stationary Fire Whirls and Moving	<u>9251/TMG-K-533</u> The Design & Characterization of a Miniature
	Multi-Layer PCs Thermal	Crystalline Silicon Nanowires and	in Thin Liquid Films Sheared by	Heat Transfer and Fluid Flow	Fire Whirls Crossing Over Barriers	Shape Memory Alloy Valve for
	Protection Structure for Laser	Superlattices,	Gas in a Narrow Channel,	through Interrupted Plates Using	in Urban Fires,	Passive Thermal Management,
	H. Zhang, Y. Zhao, H. Yu, C. Qiu,	France-Lanord, V. Jean, S.	O. Kabov, D. Zaitsev, Y. Kabova, V. Cheverda	C. Zhang, T. Simon, P. Li, J.Van de	K. Saton, N. Liu, X. Xie, W. Gao	N. Jeffers
16·10	9390/NMT-F-534 The	8885/NMM-G-534 Synthesis and	9565/FLM-H-534 Modeling of	9937/PMD-I-534 Performance of a	9387/CMB-1-534 The Importance	8913/TMG-K-534 Numerical
	Experimental Investigation of Modified Surface Effect on Microbial Fouling Characteristics, Z. Xu, Z. Liu, L. Wu, Y. Zhang, Z. Zhang	Thermal Conductivity of Monodisperse Hollow Silica Nanospheres, T. Gao, B.P. Jelle, L.I. Sandberg, A. Gustavsen	Nanoporous Membranes for High Flux Thin Film Evaporation, Z. Lu, S. Narayanan, D. Hanks, R. Raj, R. Xiao, D. Antao, E.N. Wang	Drainage Trench Employed as Ground Heat Exchanger, M. Bottarelli, H. Fujii, V. Di Federico	of Detail Reaction Mechanisms for Temperature Field Predictions of Compartment Firs, C. Yuen, G. Yeoh, R.K.K. Yuen, V. Timchenko	Investigation of Thermal Management for Kilowatt Vanadium Redox Flow Batteries, B. Zhang, Y. Lei, B. Bai, T. Zhao
16:30	9823/NMT-F-535 Experimental Analysis of High Weber Number Drop Impact onto Super- Hydrophobic and Hydrophobic Surfaces, F. Villa, C. Antonini, I. Roisman, M. Marengo	8366/NMM-G-535 Monte Carlo Simulations of the Thermal Properties of Silicon and Germanium Mesoporous Nanostructures, V. Jean, S. Fumeron, K. Termentzidis, D. Lacroix	9671/FLM-H-535 Marangoni Effect in Heated Falling Liquid Film on a Vertically Confined Plate, F. Zhang, Y. Ding, X. Zhu, H. Wang, Q. Liao, G. Song		9238/CMB-J-535 Experimental and Numerical Study of a Cooled Rocket Combustion Chamber, L. Dorey, P. Grenard, L. Matuszewski, L. Selle	<u>9311/TMG-K-535</u> An Entransy Dissipation-Based Method for Optimal Control of Variable Water Volume Heat Exchanger Networks, Q. Chen, Y. Wang
16:50	9482/NMT-F-536 Superhydrophobicity or Icephobicity for an Effective Icing Mitigation Strategy?, C. Antonini, A.Amirfazli, M. Marengo				8615/CMB-J-536 Research on Combustion Process in a Novel Microcombustor with Block Inserts, W. Yang, D. Jiang, K. Chua, K. Chua	

Awards

Recipient of the 2014 William Begell Medal

Jing Liu Professor, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Professor, Department of Biomedical Engineering, Tsinghua University

Dr. Jing Liu has been a professor at Technical Institute of Physics and Chemistry, Chinese Academy of Sciences since July 1999 and a professor at Tsinghua University since August 2008. Dr. Liu works intensively at the interdisciplinary areas of thermal sciences. He has made significant contributions to the bioheat transfer area through numerous conceptual innovation, methodology development and technical inventions spanning from high- to low-temperature medicines. Particularly, he proposed the concept of Nano-Cryosurgery and alkali metal hyperthermia therapy for a better targeted ablation of tumor. Through 15 years' continuous efforts, his invention on the Combined Cryosurgical/Hyperthermia System for Tumor Treatment has been translated into clinical trial. Dr. Liu's another noteworthy contribution is initiating the Liquid Metal Printed Electronics from which electronic circuit, sensor, conductive film or 3D metal objects can be printed out in a moment.

Dr. Liu is a recipient of 2010-2011 Best Paper of the Year Award from ASME Journal of Electronic Packaging, the National Science Fund for Distinguished Young Scholars of China, National Science and Technology Award for Chinese Young Scientist, Mao Yi-Sheng Science and Technology Award for Beijing Youth. He has graduated more than 50 Ph.D. or Master degree students and received five times highest teaching award from the CAS.

Recipient of the 2014 Donald Q. Kern Award

Sumanta Acharya

L. R. Daniel Professor and Fritz & Francis Blumer Professor, Department of Mechanical Engineering, Louisiana State University Program Director, National Science Foundation

Sumanta Acharya holds the L. R. Daniel professorship and the Fritz & Francis Blumer professorship in the department of Mechanical Engineering at Louisiana State University (LSU). He is the founding director of the Center for Turbine Innovation and Energy Research which focuses on energy generation and propulsion research. Since September 2010 he is on assignment (2010-2014) from LSU at the National Science Foundation as the Program Director of the Thermal Transport Program in the Engineering Directorate.

Professor Acharya received his undergraduate degree from the Indian Institute of Technology in Kharagpur, and his Ph.D. from the University of Minnesota. Following his Ph.D., he joined the faculty of mechanical engineering at LSU. Prof. Acharya has developed a multifaceted research program in heat transfer with a foci on gas turbine heat transfer and computational heat transfer. His scholarly contributions include mentoring nearly 85 post-doctoral researchers and graduate students, and publishing nearly 190 refereed journal articles and book chapters and over 230 refereed conference /proceedings papers. Prof. Acharya's research has been continuously supported by federal funding agencies and industries with nearly 25 million dollars of funded research during his LSU career, and includes major efforts in the area of gas turbine aerodynamics and heat transfer, combustion, computational fluid dynamics and fundamental heat transfer.

The William Begell Medal, For Excellence in Thermal Science and Engineering is being established in 2010 by **Begell House Inc.** The medal will be awarded to an individual, from among those selected to deliver Keynote lectures at the current IHTC Conference, who is held in high regard by the heat transfer community for his/her contributions an excellence in thermal science and technology and whose IHTC Keynote paper is judged to make a profound contribution to the thermal science and engineering literature.

The Donald Q. Kern Award is bestowed in recognition of the expertise in a given field of heat transfer, transport phenomena, and energy processes. Special emphasis is given to contributions that have significant practical applications. Established in 1973 by the Heat Transfer and Energy Conversion Div., now known as the Transport and Energy Processes Div. of **AIChE**, the award honors Donald Q. Kern, a pioneer in the field of process heat transfer, and commemorates his outstanding contributions as a researcher, educator, author, and practicing engineer. The Award is sponsored by **Dana Holding Corporation**.

Awards

Recipient of the 2012 Luikov Medal

Nobuhide Kasagi Professor Emeritus, The University of Tokyo Principal Fellow, Japan Science and Technology Agency

Dr. Kasagi has been a faculty member at the University of Tokyo since he received Ph.D. in mechanical engineering in 1976. He has made fundamental and applied research on fluid mechanics and heat transfer with his unique synergetic experimental and computational methodology. In his early work on turbulent heat transfer, he visualized for the first time the thermal streaky pattern, and later developed a 3-D particle tracking technique and a direct numerical simulation method. These new tools enabled him to discover coherent turbulence motions and establish the data bases of various turbulent transport phenomena, which have been used as a standard benchmark by himself and many other workers in the world. His pioneering work was further extended to smart control of turbulent transport, two-phase flows with particles/bubbles/cells, micro-scale thermal and fluid systems. He has also conducted national projects on gas turbines, solid oxide fuel cells, micro heat exchangers, and small-scale distributed energy systems.

He has actively devoted himself to various professional services such as an organizer of many international conferences and an editorial member for several international journals, e.g., Editor-in-Chief of the Int. J. Heat & Fluid Flow from 1993-2012. He has been recognized by many awards and honors such as the William Begell Medal, the Aurel Stodola Medal, and Fellow of the Royal Swedish Academy of Sciences, the Royal Academy of Engineering, the Engineering Academy of Japan, the ASME, and the JSME.

The Luikov Medal is awarded by **the International Centre for Heat and Mass Transfer (ICHMT)** to one individual every two years for outstanding contributions to the science and art of heat and mass transfer and for activities in international scientific cooperation in conjunction with ICHMT programs. The award is dedicated to Aleksey Vasilievich Luikov, a renowned Russian pioneer in the field of heat transfer. Recipient of the Nukiyama Memorial Award 2014

Gang Chen Carl Richard Soderberg Professor of Power Engineering Head of the Department of Mechanical Engineering Massachusetts Institute of Technology

Dr. Gang Chen is the Carl Richard Soderberg Professor of Power Engineering and Head of the Department of Mechanical Engineering at Massachusetts Institute of Technology (MIT). He received his B.S. and M.S. degrees from Huazhong University of Science and Technology (HUST), China, in 1984 and 1987, respectively. He obtained his Ph.D. degree from Mechanical Engineering Department, UC Berkeley, in 1993 under the supervision of the Chancellor Chang-Lin Tien. He was the first holder of the Warren and Towneley Rohsenow Professorship at MIT (2006-2009).

Dr. Chen's research interests center on nanoscale transport and energy conversion phenomena, and their applications in energy storage and conversion, and thermal management. He has made seminal contributions to the understanding of reduced thermal conductivity in nanostructures structures such as quantum wells and superlattices via both modeling and experimental studies. He and his collaborators exploited the unique nanoscale heat conduction physics to advance the field of thermoelectric materials and their applications in solar thermal and waste heat recovery. His group also developed strategies to engineer nanostructures to achieve high thermal conductivities, including the development and demonstration that polymer nanofibers can be more thermally conductive than most metals, and additives to liquids which significantly improve their thermal conductivity.

The Nukiyama Memorial Award has been established by **the Heat Transfer Society of Japan** in 2012 to commemorate the land-mark contributions by Shiro Nukiyama as an outstanding heat transfer scientist. Nukiyama addressed the challenges of the boiling phenomena and published an epoch-making paper, well known as the Nukiyama curve (boiling curve). The Nukiyama Memorial Award shall be bestowed to a scientist, preferably under 50 years of age, every two years in the field of Thermal Science and Engineering.

Exhibitors

Established in 1984, Software Cradle has been dedicated to providing a consistent service including CFD software development, sales, technical support, and education to our customers. As our unique service, we are offering various types of products, holding regular workshops /seminars, and developing customized products corresponding to the individual needs of the customers.

With "Expanding the Ultimate in Technology" as one of our core values, Fujikin has not only acquired a reputation as a leading manufacturer of specialized valves in semiconductor manufacturing, aerospace & nuclear, but has also become renowned as R&D-based manufacturer of precision valves and ultra-precise electronic flow control systems.

Fujikin Incorporated

http://www.fujikin.co.jp/

m/ Fujikin inc

DENSO

DENSO CORPORATION

THT

DENSO is a leading supplier of advanced automotive technology systems and components for all the world's major automakers.

www.globaldenso.com/en/

From a wide variety of plants, energy systems, machinery and facilities that support industry and society, to simpler facilities closer to our daily lives, IHI is continuing to broaden this product lineup in all areas of human activity from the Earth to outer space.

IHI Corporation & IHI Plant & Construction Co., Ltd. http://www.ihi.co.jp/en/

LEA Co., Ltd. provides innovative Al vapor chamber heat sink applies condenser technology by using refrigerant as the working fluid to give a lighter, smaller and more efficient heat exchange system. LEA delivers heat exchangers for a wide variety of applications with this unique aluminum vapor chamber technology.

Leading Edge Associates Co., Ltd.

http://www.alvc.jp/

Software Cradle Co., Ltd.

http://www.cradle-cfd.com/

We have devoted ourselves with unbridled passion to overcoming the ever-evolving challenges of air to become the leading manufacture of air conditioning equipment. Leveraging our unique cutting-edge technology, we deliver outstanding products and system solutions to ensure comfortable and sustainable living environment for all people & regions of the world.

Daikin Industries, Ltd.

http://www.daikin.co.jp/

begell house, inc. publishers

The BEGELL DIGITAL LIBRARY (BDL) is a comprehensive, full-text database providing the latest research data and information across a broad spectrum of engineering and biomedical sciences and applied works. The BDL contains professional peer-reviewed journals, major engineering references. International Centre for Heat & Mass conference Transfer proceedings, eBooks and more.

Japan & Kyoto

From the "Choju Giga" (The Scrolls of Frolicking Animals) handed down for centureis at Kozanji Temple.

Japan & Kyoto

Japan & Kyoto

Education System in Japan

The following is a typical example:

Age 5–6:kindergartenAge 7–12:elementary schoolAge 13–15:junior high schoolAge 16–18:high schoolAge 19–22:university, undergraduate courseAge 23–24:university, graduate course (master)Age 25–27:university, graduate course (doctor)

Semesters: April through March (2 or 3 terms)

In most university departments of engineering or science, senior students join a laboratory and submit a senior thesis.

Kyoto (Heian-kyo)

Since Kyoto was the capital of Japan for more than one thousand years, from 794 to 1868, when it was known as Heian-kyo ("capital of tranquility and peace"), it offers myriad historic attractions. Seventeen UNESCO-designated World Cultural Heritage Sites are the crown jewels of Kyoto city.

Genji Monogatari Emaki (ca. 1120-1140), The Tokugawa Art Museum

Heian-kyo (view from the north) © Courtesy of Toshio Kajikawa, Director, Kyoto City Archeological Research Institute

http://ja.wikipedia.org/wiki/%E6%9D%A1%E5%9D%8A%E5%88%B6 http://3dkyoto.blog.fc2.com/blog-entry-113.html

Note: the Heian-kyo center was located to the west of today's Kyoto City.

Kyoto in August

Largest Full Moon of the Year: 10th, Sunday

The largest and brightest full moon of the year heralds our opening reception on August 10. On this day, the moon will be both full and closest to the Earth (technical name, perigee-syzygy). The pearly orb glowing in

the sky will appear 14% larger and 30% brighter than when located at the farthest point of its elliptical orbit. The moon will rise at 18:14 and reach its zenith in Kyoto at 23:49 on August 10. http://www.nao.ac.jp/astro/sky/2014/01.html

Special Tour: 13th, Wednesday

A special bus tour has been arranged for IHTC-15 participants, at a special discount. This tour, during the afternoon of August 13, will take you to Kinkaku-ji Temple (the Golden Pavilion), Nijo-jo Castle, and Kiyomizu- dera Temple, all of which are famous and exalted cultural treasures of Japan.

Departure Kyoto International Conference Center (ICCK), 13:00 Terminuses Kyoto Station; Karasuma-Oike, 18:30 Tour fee 8,000 JPY Minimum number of participants: 30 Maximum number of participants: 80 Tour fee includes:Travel cost, Admission fees, lunch box, English speaking guide

Itinerary

ICCK to Kinkaku-ji Temple (13:10–13:40); Kinkaku-ji Temple to Nijo-jo Castle (14:30–14:50); Nijo-jo Castle to Kiyomizu-dera Temple (15:50–16:30); Kiyomizu-dera Temple to Kyoto Station (18:00–18:15); Karasuma-Oike (18:30)

How to join the tour

- 1. Log in to "My Page" of the Registration site.
- 2. Click the "Confirm/Purchase/Edit/Cancel/Additional Application" button in the My Menu column.

3. Locate the "Special Conference Tour" column at the bottom of the page. Click the "New/Additional Application" button. Follow the procedure shown on the next page and fill in the required information.

If you have any difficulty, please inquire at the registration or tour desk.

Ikebana Experience: 14th, Thursday

"Ikebana": The Japanese art of flower arrangement

A short lesson to experience the Japanese art of flower arrangement is held on August 14, specially for accompany persons. The lesson is for beginners and will be held in English. Please come to the registration desk if you like to join the lesson.

Maximum number of participants: 30Time15:00-17:00LocationConference site (ICCK), Room 104LecturerProf. Katsuhito Kurata (Ikenobo Headquarters)

Gozan-no-Okuribi: 16th, Saturday

Gozan-no-Okuribi, roughly meaning "fires lit on five mountains to guide the return of ancestor spirits," is one of the most traditional and impressive annual events in Kyoto. Gigantic Chinese characters and symbols, constructed from hundreds of carefully stacked arrays of logs and sacred wooden offerings, are lit in sequence, from east to west, on the five mountains surrounding Kyoto. Starting at 8 p.m., the Chinese character of Dai, meaning of "Large," is set ablaze on Daimonji Mountain, and is soon followed by the four other fires: "Myo-Hou", "Funagata", "Hidari-Daimonji," and "Torii". This event originated in the ancient religious practice of lighting torches to

guide ancestor spirits, temporarily staying with relations in the present world for a few days, on their return journey to the spirit world. Marking the end of the O-bon festival that is held every August throughout Japan, people appreciate the summer they enjoyed and feel the breeze of the coming autumn they look forward to. Gozan-no-Okuribi is particularly loved by Kyoto people, and many thousands of tourists gather here on the evening of August 16 to share this feeling.

Miscellaneous Topics

From the "Choju Giga" (The Scrolls of Frolicking Animals) handed down for centureis at Kozanji Temple.

History of IHTCs

#	Year	City	Nation	#	Year	City	Nation
4	1051	London	United Kingdom	8	1986	San Francisco	United States
I	1951	Atlantic City	United States	9	1990	Jerusalem	Israel
2	1961	Boulder	United States	10	1994	Brighton	United Kingdom
2	1962	London	United Kingdom	11	1998	Kyongju (慶州)	Korea
3	1966	Chicago	United States	12	2002	Grenoble	France
4	1970	Paris Versailles	France	13	2006	Sydney	Australia
5	1974	Tokyo (東京)	Japan	14	2010	Washington	United States
6	1978	Toronto	Canada	15	2014	Kyoto (京都)	Japan
7	1982	München	Germany	16	2018	Beijing (北京)	China

2014 Tricentennial

Daniel Gabriel Fahrenheit invented mercury thermometer in 1714

http://www.pg.gda.pl/en/index.php/about/patrons

http://bigstory.ap.org/article/scientists-make-virtual-portrait-fahrenheit The undated picture provided on Tuesday, Nov. 27, 2012 by **the Gdansk University of Technology** Press Office shows a computer-generated portrait of physicist **Daniel Gabriel Fahrenheit**. As according to scientists there are no portraits of Fahrenheit, the Gdansk-born inventor of a temperature scale, scientists developed a special computer program generating portraits of people whose appearance is unknown, using portraits of relatives. (AP Photo/Gdansk University of Technology Press Office)

Personal Memories of IHTCs

Personal Memories of IHTCs

John Rose Queen Mary University of London, UK

Having attended all except the first IHTC, I was honored to be invited to add a few lines on my personal memories. These are a few recollections of experiences and individuals whom I first met at IHTCs and who have influenced my life and career. I hope that at least something may be of interest to IHTC-15 attendees.

The conference called the IMechE/ASME General Discussion on Heat Transfer was held in London and Atlantic City **1951**, and later the International Heat Transfer Conference in Boulder **1961** and London **1962**. Only after the meeting in Chicago in **1966**, which was given the title Third International Heat Transfer Conference, did the earlier meetings become recognized as the first and second IHTCs. I attended the second when I was a graduate student working on dropwise condensation in London.

At the **1962** London conference a paper by Professor Westwater of the University of Illinois, Urbana (chairman of the later third conference) reported heat-transfer coefficients for dropwise condensation which were lower than I was observing by factors exceeding 10 and showed the opposite trend to mine regarding dependence on temperature difference. (The heat-transfer coefficient increases with increasing temperature difference in dropwise condensation due to increase in active nucleation site density.) I did not venture to speak at that meeting but later wrote in a 1964 Int. J. Heat Mass Transfer paper "There exists a wide range of published results. The approximate extremes are given by the present work and those of Welch and Westwater." Many years later Jim Westwater magnanimously invited me to participate in a special conference to mark his retirement.

The **1966** conference was of particular significance for me. On my way from London to Chicago I stopped in Boston for a few days and met Warren Rohsenow at MIT who invited me to spend a sabbatical year (1967/68) there. At the Chicago conference Professor Edwin Le Fevre, my PhD advisor, and I published our theory of dropwise condensation. Groups of papers were reviewed by rapporteurs rather than individual presentations by authors. Peter Griffith of MIT, the rapporteur in our case, in an otherwise fairly complimentary review remarked that we, after critically reviewing the earlier experimental data, had discarded those we thought to be questionable - but then he remarked that "this included most of the data in the literature." This was true - most of the earlier data were wrong due to the extreme sensitivity of the vapor-surface temperature difference to the presence

non-condensing gases as well as to inadequate methods used to determine the very small temperature differences. Unfortunately, this has also been the case in subsequently published results. As a young man I was dismayed that both our experiments and theory were not immediately accepted as being correct. This has apparently occurred only very slowly over the years and the recent resurgence of interest in dropwise condensation seems to have brought belated recognition of this work.

At the **1970** conference in Paris in order to save money I resided in a tent at the Bois de Boulogne camp site and was surprised to see other conference attendees there also. Perhaps most important for me was meeting Professor Ichiro Tanasawa of the University of Tokyo. He and I were around the same age, and both of us had closely similar views on dropwise condensation which differed from those held by many others at that time. This was the start of my long and happy association with Japan. It was at IHTC-5 in Tokyo **1974** that I first encountered a young Yoshio Utaka, a graduate student of Professor Tanasawa at that time and now Professor Utaka of Yokohama University.

I don't have too many recollections of the Toronto **1978** meeting - except an experience of "table dancing" in a bar where I was taken by students. At the Munich **1982** conference an important event for me was meeting again Professor Evgenii Fedorovic of the Leningrad Polytechnic Institute. He and I had shared an office in the heat transfer lab at MIT for my memorable year, 1967-68. San Francisco **1986** enabled me to renew friendships with Warren Rohsenow and Leon Glicksman from MIT, and Paul Marto of the US Naval Postgraduate School, Monterey where I had spent 6 months in 1981.

The Jerusalem conference in **1990** was clouded by events in the Middle East for which, unfortunately, I still see no solution. Several US colleagues whom I was hoping to see were not able to attend. I was only able to attend the Brighton, UK meeting in **1994** for one day. At the Kyongju meeting in Korea **1998**, I gave a keynote presentation – "Interphase matter transfer, the condensation coefficient and dropwise condensation." Here I tried to emphasize my conviction that the so-called *condensation coefficient* in kinetic theory of phase change must be near unity as assumed in our 1966 dropwise condensation theory.

Grenoble, **2002**, which I recall as a most pleasant interlude in one of my many vacation driving tours in France, enabled me to meet again my French colleagues from university and industry. I did not see too much of the Sydney **2006** meeting owing to a terrorist scare, which caused chaos at Heathrow airport in London and delayed my arrival in Sydney by two days. Washington **2010** was memorable as the end point of a trip via Beijing, Hong Kong, Los Angeles and Atlanta, where I was glad to be able to spend time with my good friend Srinivas Garimella and his students at Georgia Tech. Now I am looking forward to the Kyoto conference and renewing acquaintance with friends from Japan and around the world. I have no doubt that this will be very successful and trust that the conference series will continue long into the future.

Special Public Seminar

9th, Saturday Room D 15:00 - 16:00 Special Public Seminar

Solar Radiation Management — Buying Time to Avert Dangerous Global Heating —

Professor, ScD, DSc, DEng, Docteur (hc), FRAeS, FRS, FREng School of Mechanical, Aerospace and Civil Engineering The University of Manchester

Abstract

As is widely known, global warming has been occurring since the industrialization of the world's economy. It has now reached a level where serious, difficult-to-reverse changes are occurring in our environment. Yet, while governments talk about the need to reduce carbon dioxide emissions – the principal cause of the rise in temperature - the level of CO_2 present in our atmosphere goes on increasing steadily with no sign of levelling out, still less of falling.

Thus, unless this pattern changes rapidly, emergency measures will be needed, at least for a few decades, until the world does figure out how to sustain a style of living without substantial CO₂ release. The lecture will focus

mainly on a strategy known as Solar Radiation Management (i.e. reducing the amount of sunlight reaching the earth) and, within that group of approaches, on Marine Cloud Brightening. This entails the brightening of low-level marine stratus clouds by adding many additional cloud-condensation nuclei (CCN) to make the clouds more

reflective. The proposed route for doing this is by way of a fleet of unmanned ships powered by Flettner rotors with added performance achieved by adding discs to the rotors. Some of the details of these craft including the aerodynamic design of the thrust-producing Flettner rotors are examined. The author's team's computations, using Computational Fluid Dynamics (CFD) has shown that the proposed addition of discs to the rotors has a damaging effect on the ship's performance.

Professional biography of the speaker

Professor Launder was appointed Professor of Mechanical Engineering at the University of California, Davis, in 1976, and stayed there four years until he accepted the Headship of the Thermo-Fluids Division at the University of Manchester Institute of Science and Technology, in 1980.

His research group, focusing on the mechanics and mathematical modelling of turbulent flows, particularly in the presence of strong buoyant or rotational forces, became internationally recognized. In particular, his group developed the commonly applied standard k- ε turbulence and Reynolds stress transport models. In recognition of his many achievements, Professor Launder was admitted as a Fellow of the Royal Society and the Royal Academy of Engineering, and he has received many international honors, including honorary degrees from two European universities. He also served as the Regional Director of the Tyndall Centre for Climate Change Research, from its creation in 2000 until 2006.

While retaining his interests in fundamental turbulence modelling, much of his time nowadays is spent preparing biographical matter and in editorial work.

The special public seminar is to be held jointly with the Joule Energy Contest (JENECON) as the IHTC-15 public session, "Energy Revolution of the 21st Century," for which all are invited to attend free of charge.

Organized by

The Heat Transfer Society of Japan; Science Council of Japan

Supported by

Thermal Engineering Division of Japan Society of Mechanical Engineers; Japan Science and Technology Agency; Institute of National Colleges of Technology, Japan; Kyoto Prefecture; Kyoto City; Board of Education of Kyoto Prefecture; Board of Education of Kyoto City; Kyoto Convention Bureau; Kameyama Candle House.

Joule Energy Contest (JENECON)

9th, Saturday Room D 13:00 - 14:45 Joule Energy Contest (JENECON)

A scientific/technological contest for high school students and technical college students

James P. Joule 1818-1889

Abstract

An important mission of the 15th International Heat Transfer Conference organizing committee is to transcend the conventional framework of an academic conference, which mainly caters to professionals, by also focusing upon activities that engage the public at large. Naturally, "Energy" is one of the most important keywords in Heat Transfer. We are holding a contest, called the "Joule Energy Contest" (JENECON), for Japanese high school and technical college students, together with a public seminar on relevant topics, to raise young people's awareness of energy and heat transfer issues.

The contest challenge is to elevate a 0.5 kg mass to a height of 10 meters by using only the thermal energy of a candle flame. Consequently, the participants must strive to maximize the thermal efficiency of their candle-powered lifting mechanism. Participants who have passed the preliminary round will make their final presentations on August 9th at the Kyoto International Conference Center, prior to IHTC-15. The "IHTC-15 Joule Prize" will be awarded to the team that achieves the highest thermal efficiency. We hope that this contest will help young students appreciate the difficulties of converting thermal energy to mechanical energy, and we are certain that overcoming these difficulties through their own originality and ingenuity will be deeply satisfying to the participants.

Seventeen teams from all over Japan applied in advance to participate in this contest. Among these, 11 teams entered the contest and 7 have passed the first screening. These teams are passionately committed to the contest and have already realized surprising ideas and impressive results. The finally selected teams will make roughly ten-minute oral presentations, starting at 13:00 on August 9th, in Room D of the Conference Center. This final stage is

open to the public, and we strongly hope that many people will attend the final presentation of the Joule Energy Contest.

Contest schedule on August 9, 2014:

13:00–13:15	Brief explanation of the contest scope
12.15 11.15	Einclastion of presentations by the se

13:15–14:45	Final selection of presentations by the seven teams that
	passed the first screening

15:00–16:00 Special public seminar by Prof. B. E. Launder

16:15–17:00 Award Ceremony and Comments on the results

Executive Committee for the Joule Energy Contest

Hitoshi Asano Masafumi Hirota Hiroshi Iwai Kosuke Nishida Motohiro Saito Masahiko Shibahara Kazuhiko Suga Masato Tagawa Kazuya Tatsumi Yasutaka Yamaguchi Hideo Yoshida

Kobe University Mie University Kyoto University Kyoto Institute of Technology Kyoto University Osaka University Osaka Prefecture University Nagoya Institute of Technology Kyoto University Osaka University Kyoto University

Organized by

The Heat Transfer Society of Japan

Science Council of Japan,

Supported by

Thermal Engineering Division of the Japan Society of Mechanical Engineers; Japan Science and Technology Agency; Institute of National Colleges of Technology, Japan; Kyoto Prefecture; Kyoto City; Board of Education of Kyoto Prefecture; Board of Education of Kyoto City; Kyoto Convention Bureau; Kameyama Candle House.

Young Researchers Meeting (YRM)

13th, Wednesday Kyoto Imperial Palace, etc. 13:30 - 20:00 Young Researchers Meeting (YRM)

Networking events and activities for young researchers in the fields of thermal science and engineering

The Young Researchers Meeting (YRM) is an event devoted to the casual interchange of research and ideas in thermal science and engineering, and aims to expand the international networks of young researchers who have gathered from all over the world to participate in IHTC-15. This meeting is primarily for research staff, postdocs, and PhD students younger than approximately 35. Originally, it was planned for 40-60 persons, but now we have 77 participants from 17 countries. For this international group of colleagues, we have planned an excursion to the imperial palace (a special reserved tour), stimulating networking activities, and a dinner party at the Kyoto International Community House.

Time schedule

<u>12th (Tue)</u>	
12:30-12:45	Pre-meeting in room 104 (Opening and announcement)
<u>13th (Wed)</u>	
13:30	Meet at Kyoto Imperial Palace
14:00–15:00	Special tour inside the Kyoto Imperial Palace
15:00–15:30	Travel to Kyoto Int'I. Community House (by subway)
15:30–18:00	Networking activities
18:00–20:00	Dinner party
<u>14th (Thu)</u>	
12:30–13:50	Post-meeting in the lunch area

On the 12th, a pre-meeting is scheduled for the opening address, staff introductions, and some announcements. The pre-meeting will be held in room 104, using the latter half of our lunch time after we finish eating.

On the 13th, we will start the YRM with a special tour at Kyoto Imperial Palace. Afterwards, we will travel to an event site and enjoy networking activities and a buffet dinner, which may be the most important and exciting part of the YRM.

On the 14th, a post-meeting will be held at a reserved table in the lunch area to solicit feedback from attendees and discuss our prospects for the next YRM.

Kyoto Imperial Palace

Kyoto Int'l. Community House

NOTICE:

The registration has been closed because the number of participants has reached the maximum, so on-site registration for YRM is not possible.

You can find the latest information on the EventMobile and the official website (http://www.ihtc-15.org/YRM.shtml)

The Facebook page is now open. Find and join "Young Researchers Meeting in IHTC" to chat, share photos, and organize casual meet-ups.

YRM Project Members

Yokohama National University Takuto Araki AGH University of Science and Technology Grzegorz Brus Masashi Kishimoto Imperial College London Kansai Universitv Yutaka Oda Kyoto University Motohiro Saito Kazuya Tatsumi Kyoto University

Advisors

Kyoto University Hiroshi Iwai Kyoto University Hideo Yoshida

Word Heritage

Japanese: Integration from Three Countries

Chinese characters

Chinese, Korean, and Japanese, share many Chinese characters.

	甲骨文	金文	篆文
	Oracle bone script	Chinese bronze	Seal script
	from ca. 14th cent. BCE	from ca. 13th cent. BCE	from ca. 4th cent. BCE
藝 站 arbori- culture	The set	雪精	と
火 _{fire}	N.S.		火
爇. heat	Phono-semantic con (Radical-phonetic cl Created by combining determinative, a char approximately the con joined with one of a lin determinative charact element of meaning.	類	

The Chinese character corresponding to "heat" was developed because, for effective arboriculture, warm condition (fire) is necessary.

(Numbers indicate the stroke order.)

Hiragana and Katakana in Japanese

In addition to Chinese characters, Japanese also uses Hiragana and Katakana syllabaries, as shown below.

Three representations in Japanese (characters and pronunciation)

	Japan	Heat transfer				
Kanji (Chinese characters)	日本	熱 伝達 [†]	伝 熱			
Hiragana (Japan original)	にほん、にっぽん	ねつ でんたつ	でん ねつ			
Katakana (Japan original)	ニホン、ニッポン	ネツ デンタツ	デン ネツ			
Japanese pronunciation	Nihon, Nippon	Netsu-dentatsu	Den-netsu			

[†] In Japanese "Netsu-dentatsu" means "Convective heat transfer."

Approximately 5×10 matrix for Hiragana and Katakana (& Original Kanji)

あア	かカ	さサ	たタ	なナ	はハ	まマ	やヤ	らラ	わワ
安a	加 ka	左 sa	太 ta	奈 na	波 ha	末ma	也 ya	良 ra	和 wa
いイ	きキ	しシ	ちチ	にニ	ひと	みミ	ゐ中	りリ	
以i	幾 ki	之 si	知 ti	仁ni	比 hi	美 mi	為 yi	利 ri	
うウ	くク	すス	つツ	ぬヌ	ふフ	むム	ゆユ	るル	んン
宇u	久 ku	寸 su	川 tu	奴 nu	不hu	武mu	由 yu	留 ru	无 n
えエ	けケ	せセ	てテ	ねネ	$\sim \sim$	をメ	反工	れレ	
衣e	計 ke	世 se	天 te	称 ne	部 he	女 me	恵 ye	礼 re	
おオ	こコ	そソ	とト	の/	ほホ	もモ	よヨ	30	をヲ
於Ο	己 ko	曽 SO	止 to	乃 no	保 ho	毛mo	与 yo	呂 ro	遠 wo

Word Heritage

Thermo-Fluid Phenomena in Japanese Classical Literature

The secretariat of IHTC-15 in Kyoto would like to present a few topics which have some relevance to heat and fluid flow in our daily life. Japanese people are very sensitive to the four seasons, their atmosphere, winds, and thermal characteristics, in addition to their visual aspects. Also, the flow of rivers is an essential element of the spiritual aspect of Nature for Japanese. Below are some typical examples, extracts from three famous essays in Japanese Classical literature, all based on lives in Kyoto.

Makura no Sōshi (ca. 1000)

Makura no Sōshi (The Pillow Book) is a diary by a courtesan Sei Shōnagon.

In spring, it is the dawn. (omit) In summer, it is the night. (omit)

In autumn, it is the evening. (omit)

In winter, it is the early morning. (omit)

(Translations by Ivan Morris and Meredith McKinney are available; note that the translation by Arthur Waley is just about a quarter of the original work, and the above famous sentences are not included.)

Hōjōki (1212)

Hōjōki (The Ten Foot Square Hut) is a short work by **Kamo-no-Chōmei**. Its opening sentence is famous in Japanese literature as an expression of mujō, the transience of things.

Ceaselessly the river flows, and yet the water is never the same, while in the still pools the shifting foam gathers and is gone, never staying for a moment. Even so is man and his habitation. (Translated by A. L. Sadler, 1928)

Tsurezuregusa (1330-1332)

Tsurezuregusa (Essays in Idleness) is a collection of essays by Yoshida Kenkō.

Section 55

A house should be built with the summer in mind. In winter it is possible to live anywhere, but a badly made house is unbearable when it gets hot. There is nothing cool-looking about deep water; a shallow, flowing stream is far cooler. When you are reading fine print you will find that a room with sliding doors is lighter than one with hinged shutters. A room with a high ceiling is cold in winter and dark by lamplight. People agree that a house which has plenty of spare room is attractive to look at and may be put to many different uses. (Translated by Donald Keene, 1966)

Scientific Quotes from Modern Japanese

The followings are the scientific quotes by two famous Japanese physicists in the 20th century and the National Diet Library.

"Science and Brain," by Torahiko Terada^[1] (1878-1935)

A smart person cannot fall in love. Love is blind. To be scientist, you must be an ardent lover of nature. Also, nature opens its heart only to a lover. The history of science is the history of illusions and failures. It is the history of dull and plodding achievements made by individuals of great stupidity, but who have equally great patience.

Scientist and Brain (Smart and Dull), original in Japanese (1933)

[1] Torahiko Terada was a professor at Tokyo Imperial University, and worked on a wide range of topics in physics. He also published many essays.

"Exploring a Frontier," by Hideki Yukawa ^[2] (1907-1981)

It is very important for you to consider the future state as that of the past when you explore a frontier.

[If you may be afraid when you step into an unknown world, you had better go further, considering the unknown world has been already well established.] from the memory of Dr. Taizo Muta, one of Yukawa's disciples (1977)

[2] Hideki Yukawa was a professor of theoretical physics at Kyoto (Imperial) University, and was the first Japanese Nobel laureate.

"Truth," by the National Diet Library, Japan (since 1948)

The National Diet Library is hereby established as a result of the firm conviction that <u>truth makes us free</u> and with the object of contributing to international peace and the democratization of Japan as promised in our Constitution.

http://www.ndl.go.jp/en/aboutus/outline/purpose.html

Heat and Mass Transfer in Computer Animation

Our age is making unprecedented advances not only in the sphere of natural science and engineering, but also in that of animation. **FROZEN**, produced by Walt Disney Animation Studios in 2013, is the latest supreme example. Furthermore, as the title indicates, this marvelous animation intimately deals with heat and mass transfer. (*"Wow! So, this is heat. I love it."* by **Olaf** in front of a fireplace)

If you are curious about computer animation, be sure to explore "*Moving Innovation: A History of Computer Animation*," by **Tom Sito**, a famous pioneer in this field [1]. Basic computer animation technology includes the following tools [2]:

- morph target animation,
- motion capture,
- ray tracing,
- rendering,
- wire-frame models.

In **FROZEN**, starting with highly developed implementations of the technologies listed above, "*The studio also developed several new tools to generate realistic and believable shots, particularly the heavy and deep snow and its interactions with the characters* [3]." One of the key papers for snow simulation is freely available from the website of Walt Disney Animation Studios [4].

Although most of us are amateurs at computer animation, there is likely much room for further research concerning the representation of heat and mass transfer.

References

- [1] Tom Sito, *Moving Innovation: A History of Computer Animation*, MIT Press, 2013 (http://mitpress.mit.edu/books/moving-innovation)
- [2] http://en.wikipedia.org/wiki/Computer_animation
- [3] Technology development in FROZEN, http://en.wikipedia.org/wiki/Frozen_(2013_film)
- [4] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, Andrew Selle, *A material point method for snow simulation*, 2013 http://www.disneyanimation.com/technology/publications

Ukichiro Nakaya

"Snow crystals are letters sent from heaven"

Ukichiro Nakaya (1900–1962) was a Japanese physicist and science essayist known for his work in glaciology and cryogenic sciences. He is credited with making the first artificial snow crystals. We would like to introduce him to you, in addition to **Wilson Bentley** (1865–1931),

one of the first known photographers of snow crystals.

http://en.wikipedia.org/wiki/Ukichiro_Nakaya

http://www.kagashi-ss.co.jp/yuki-mus/en_facilities.html http://www.its.caltech.edu/~atomic/snowcrystals/class/class.htm U. Nakaya, *Snow Crystals: Natural and Artificial*, Harvard Univ. Press, 1954.

http://snowflakebentley.com/

© Rokuro Yoshida Courtesy of Kazuko Yoshida and Kenzo Kanda

International Year of Crystallography 2014

The International Year of Crystallography 2014 (IYCr 2014) is a global event to celebrate the first 100 years of great achievements in crystallography and consequent contributions to human progress. Modern crystallography was born nearly one hundred years ago out of the efforts of three Nobel Laureates, **Max von Laue** (1914) and **W. H.** and **W. L. Bragg** (1915).

Based on http://www.iycr2014.jp/preface_e.html

Three Japanese pioneers, **Torahiko Terada** (see p.132), **Shoji Nishikawa** (1884–1952), and **Ukichiro Nakaya**, have website introductions:

http://www.iycr2014.jp/introduction_e.html http://www.iycr2014.jp/pioneer_e.html

"Yuki-Guni" Snow Country

Snow Country is a full-length novel by **Yasunari Kawabata** (1899-1972),

a Japanese novelist who received the Nobel Prize for Literature in 1968. Its first sentence *"The train came out of the long tunnel into the snow country."* (translated by E. G. Seidensticker) is very famous.

© Courtesy of Yukiguni-kan

http://www.e-yuzawa.gr.jp/yukigunikan/

Cold and/or Hot Breaks

Kyoto International Conference Center (ICC Kyoto)

The ICC Kyoto, designed by architect Sachio Otani (1924-2013), opened in 1966. Current renovations limit the visual impact of its unique trapezoidal elevation. The design was inspired by Gasshou-zukuri, an architectural style based on the shape of hands held in prayer, the Buddhist mudra of veneration.

http://www.icckyoto.or.jp/en/construction/index.html

Gassho-zukuri

The Historic Villages of Shirakawa-go and Gokayama were listed as World Heritage Sites in 1995, and exemplify the beauty of Gasshou-zukuri.

© Courtesy of the Shirakawa Village Office http://shirakawa-go.org/english/ http://whc.unesco.org/en/list/734

Committees, Author Index Statistics, End-Credit Rolls

From the "Choju Giga" (The Scrolls of Frolicking Animals) nanded down for centureis at Kozanji Temple.

Committees

Meetings

The Assembly for International Heat Transfer Conferences (AIHTC)

August 13, Wednesday at Room 104 13:30-17:00

International Centre for Heat and Mass Transfer (ICHMT)

August 10, Sunday10:00-12:00General Assembly meeting at Room 10413:00-15:00Scientific Council meeting at Room C216:00-18:00Executive Committee meeting at Room 104

EUROTHERM Committee

August 12, Tuesday at Kyoto Garden Palace 20.00-22.30

The Assembly for International Heat Transfer Conferences (AIHTC)

President

Avram Bar-Cohen

Vice President

Nobuhide Kasagi

Secretary

Hideo Yoshida

Past President

Graham de Vahl Davis Jean-Marc Delhaye Richard J. Goldstein Geoffrey F. Hewitt Frank C. Hooper Sung Tack Ro

Delegates Australia

Steven Armfield John A. Reizes Brazil Luiz F. Milanez Helcio R. B. Orlande Canada Sylvain Coulombe Patrick H. Oosthuizen China Xing Zhang Chongfang Ma France **Denis Maillet** Sebastian Volz Germany Stephan Kabelac Ulrich Gross

India Ravi B. Grover S. Srinivasa Murthy Israel Gad Hetsroni Neima Brauner Italy Gian P. Celata Maurizio L. Cumo Japan Shigenao Maruvama Hideo Yoshida Korea Sung Jin Kim Goon-Cherl Park Portugal Pedro Coelho Vítor A. F. Costa

Russia Alexander I. Leontiev Leonid A. Dombrovsky South Africa Charl G. du Toit Josua P. Meyer Switzerland John R. Thome **Dimos Poulikakos** The Netherlands Theo H, van der Meer Anton A. van Steenhoven United Kingdom Adrian Briggs Geoffrey F. Hewitt United States of America Michael Jensen Mohamed S. El-Genk

The 15th International Heat Transfer Conference (IHTC-15)

Organizing Committee

Nobuhide Kasagi, Chairman, (Japan Sci. & Tech. Agency/Univ. of Tokyo) Hideo Yoshida, Vice Chairman, (Kyoto University) Shigenao Maruyama, Vice Chairman, (Tohoku University) Keiko Fujioka (Functional Fluids Ltd.) Yoshinori Hisazumi (Osaka University) Masaru Ishizuka (Toyama Prefectural University) Isao Kataoka (Osaka University) Masafumi Katsuta (Waseda University) Masahiro Kawaji (The City University of New York) Toshiro Makino (Kyoto University) Toshio Miyauchi (Tokyo Institute of Technology) Masanori Monde (Saga University) Hideki Nakagome (Chiba University) Akira Nakayama (Shizuoka University) Ken Okazaki (Tokvo Institute of Technology) Mamoru Ozawa (Kansai University) Kenichiro Takeishi (Osaka University) Akira Takimoto (Kanazawa University) Kazuo Tanishita (Keio University) Toshihiro Tsuji (Nagoya Institute of Technology) Yoshio Utaka (Yokohama National University) Yukio Yamada (The University of Electro-Communications) Seiichi Yokobori (Tokvo City University)

Kazuya Tatsumi Artistic Design for IHTC Logo, Conf. Booklet Cover, Conf. Website Satoru Momoki System Design for Paper-Submission Website

Executive Committee

Hideo Yoshida, *Chairman*, (Kyoto University) Tomoaki Kunugi, Vice Chairman, (Kyoto University) Hiroshi Iwai, Secretary General, (Kyoto University) Hitoshi Asano (Kobe University) Takemi Chikahisa (Hokkaido University) Yoshitaka Fukuyama (JAXA) Yoshimichi Hagiwara (Kyoto Institute of Technology) Ruri Hidema (Kobe University) Eiji Hihara (The University of Tokyo) Masafumi Hirota (Mie University) Koichi Hishida (Keio University) Kyoji Inaoka (Doshisha University) Masaru Ishizuka (Toyama Prefectural University) Yoshinori Itaya (Gifu University) Tsuvoshi Kawanami (Kobe University) Shigeo Maruyama (The University of Tokyo) Mitsuhiro Matsumoto (Kyoto University) Ryosuke Matsumoto (Kansai University) Hisato Minagawa (The University of Shiga Prefecture) Kazuvoshi Nakabe (Kyoto University) Kosuke Nishida (Kyoto Institute of Technology) Yutaka Oda (Kansai University) Taku Ohara (Tohoku Universitv) Hajime Onishi (Kanazawa University) Motohiro Saito (Kyoto University) Masahiko Shibahara (Osaka University) Kazuhiko Suga (Osaka Prefecture University) Hiroshi Suzuki (Kobe University) Masato Tagawa (Nagoya Institute of Technology) Hiroshi Takamatsu (Kyushu University) Nobuyuki Takenaka (Kobe University) Kazuva Tatsumi (Kvoto Universitv) Hisashi Umekawa (Kansai University) Yasutaka Yamaguchi (Osaka University) Takehiko Yokomine (Kyoto University)

International Scientific Committee

Japanese Scientific Committee (JSC)

Shigenao Maruyama, *Chairman*, (Tohoku University) Yasuyuki Takata, *Vice Chairman*, (Kyushu University) Atsuki Komiya, *Secretary*, (Tohoku University) Katsunori Hanamura (Tokyo Institute of Technology) Yuji Nagasaka (Keio University) Masamichi Kohno (Kyushu University) Satoru Momoki (Nagasaki University)

International Scientific Committee (ISC)

Australia Steven Armfield (The University of Sydney) John A. Reizes (University of Technology, Sydney) Brazil Luiz F. Milanez (University of Campinas) Helcio R. B. Orlande (Federal University of Rio de Janeiro) Canada Svlvain Coulombe (McGill University) Patrick H. Oosthuizen (Queen's University) China Xing Zhang (Tsinghua University) Chongfang Ma (Beijing University of Technology) France Denis Maillet (University of Lorraine) Sebastian Volz (Ecole Centrale Paris) Germany Stephan Kabelac (Helmut Schmidt University) Ulrich Gross (TU Bergakademie Freiberg) India Ravi B. Grover (Bhabha Atomic Research Centre) S. Srinivasa Murthy (Indian Institute of Technology Madras) Israel Gad Hetsroni (Israel Institute of Technology) Neima Brauner (Tel Aviv University) Italy Gian P. Celata (ENEA) Maurizio L. Cumo (Sapienza University of Rome)

Korea

Sung Jin Kim (Korea Advanced Institute of Science and Technology) Goon-Cherl Park (Seoul National University) Portugal Pedro Coelho (University of Lisbon)

Vítor A. F. Costa (University of Aveiro)

Russia

Alexander I. Leontiev (Moscow Power Engineering Institute) Leonid A. Dombrovsky (Russian Academy of Sciences) South Africa Charl G. du Toit (North-West University) Josua P. Meyer (University of Pretoria) Switzerland John R. Thome (Ecole polytechnique federale de Lausanne) Dimos Poulikakos (Swiss Federal Institute of Technology) The Netherlands Theo H. van der Meer (University of Twente) Anton A. van Steenhoven (Eindhoven University of Technology) United Kingdom Adrian Briggs (Queen Mary, University of London) Geoffrey F. Hewitt (Imperial College London) United States of America Michael Jensen (Rensselaer Polytechnic Institute) Mohamed S. El-Genk (University of New Mexico)

Advisory Board

Past Presidents of the Heat Transfer Society of Japan

Nobuyuki Araki (Shizuoka University) Shintaro Enya (IHI, Co.) Yasunobu Fujita (Kyushu University) Yujiro Hayashi (Kanagawa University) Hiroshi Kawamura (Tokyo University of Science) Sadanari Mochizuki (Tokyo University of Agriculture and Technology) Fumimaru Ogino (Kyoto University) Yasutaka Nagano (Nagoya Institute of Technology) Masahiro Shoji (The University of Tokyo) Ayao Tsuge (Mitsubishi Heavy Industries, Ltd.)

(Affiliations are based on the previous ones.)

Name	ID	р.	Allain, Hervé	CPM-E-422 71	Athavale, Jayati	HTE-C2-421 70	Baudin, Nicolas	EVP-B1-211 40
Abahri, Kamilia	PMD-I-422	75	Allesina, Giulio	EES-K-116 39	aus der Wiesche, Stefan	TDY-C1-516 81	Baudouy, Bertrand	CPM-E-422 71
Abdelaziz, Omar	EES-K-114	39	Alsheghri, Ammar A.	FLM-H-531 88	Aute, Vikrant	EES-K-114 39	Bazile, Rudy	TPS-B2-512 79
Abdelaziz, Omar	EES-K-123	39	Altemani, Carlos	CND-H-522 88	Ayres, Samantha	CNV-C1-524 81	Beale, Steven	FCL-H-124 36
Abdelmessih, Amanie	BMA-E-224	47	Altura, David	MIN-C1-224 43	Azulay, Asaf	TPM-B2-523 80	Belarbi, Rafik	PMD-I-422 75
Abe, Fumiaki	CMB-J-521	91	Alvarado, Jorge	TPM-B2-522 80	Azzolin, Marco	CDS-J-125 38	Bello-Ochende, Tunde	HEX-G-126 35
Abe, Yutaka	CDS-J-225	54	Alves, Carlos	INV-E-214 47	Baba, Shohei	FCL-H-121 36	Bello-Ochende, Tunde	SOL-B2-235 42
Abiko, Kazusa	HPP-K-426	77	Amber, Ityona	SOL-B2-225 42	Bacellar, Daniel	EES-K-114 39	Bello-Ochende, Tunde	RNE-C1-322 59
Abishek, Sridhar	EVP-B1-213	40	Ameel, Bernd	HEX-G-222 50	Bader, Roman	PMD-I-314 64	Bello-Ochende, Tunde	HTE-C2-534 83
Abreu, Luiz	INV-E-214	47	Ameel, Bernd	PMD-I-323 64	Bae, Ji-Yeul	HTE-C2-412 70	Belyaev, Alexander	TPB-B2-124 30
Acharya, Sumanta	GTB-G-415	73	Ami, Takeyuki	HEX-G-215 49	Bae, Ju Chan	HTE-C2-412 70	Ben-Abdallah, Philippe	PPE-G-112 35
Adelaja, Adekunle O.	CDS-J-116	38	Ami, Takeyuki	TPF-B2-322 58	Baek, Seung Wook	SOL-B2-215 41	Ben-David, Ori	TPM-B2-523 80
Adelaja, Adekunle O.	CDS-J-121	38	Amin Rana, Ruhul	CND-H-516 87	Baelmans, Martine	EEC-H-234 52	Bennacer, Rachid	PMD-I-422 75
Adewumi, Olayinka O.	HEX-G-126	35	Amirfazli, Alidad	NMT-F-536 85	Baelmans, Martine	OPT-F-526 85	Benselama, Adel	MTR-F-122 34
Adewumi, Olayinka O.	HTE-C2-534	83	Ando, Jun	PBL-B1-511 78	Baelmans, Martine	PMD-I-524 89	Bergez, Wladimir	PBL-B1-524 78
Adio, Saheed Adewale	TPP-I-221	53	André, Frédéric	CMB-J-532 91	Bai, Bofeng	EEC-H-212 51	Bertin, Yves	MTR-F-122 34
Adio, Saheed Adewale	TPP-I-222	53	Anno, Hiroaki	TEL-K-323 66	Bai, Bofeng	TMG-K-534 93	Betz, Amy	TPP-I-224 53
Afroz, Hasan M. M.	CDS-J-211	54	Antao, Dion	NMS-C2-215 44	Bai, Chao	TBF-D-225 46	Beyne, Eric	EEC-H-234 52
Agbim, Kenechi	TEL-K-324	66	Antao, Dion	FLM-H-534 88	Bai, Fang	NSM-H-315 63	Bhaumik, Swapan	PBL-B1-532 79
Agostini, Francesco	EEC-H-223	51	Antoni, Thomas	TPP-I-214 52	Bai, Fengwu	PMD-I-312 64	Bhavnani, Sushil	CDS-J-115 38
Agrawal, Ashish	HEX-G-123	35	Antonini Alves, Thiago	EEC-H-221 51	Bai, Jia Xi	TDY-C1-423 69	Bi, Cheng	CND-H-424 74
Agrawal, Chitranjan	HTE-C2-531	83	Antonini, Carlo	NMT-F-535 85	Bai, Shiwu	CND-H-514 87	Bi, Jingliang	PBL-B1-425 67
Ahamed, Mohammad Shahed	HPP-K-412	77	Antonini, Carlo	NMT-F-536 85	Balaji, C.	INV-E-211 47	Biegger, Christoph	HTE-C2-512 82
Ahn, Tae-hwan	CDS-J-113	38	Antonsen, Nicolas	TPN-B2-421 68	Balaji, Chakravarthy	HTE-C2-231 45	Biehs, Svend-Age	PPE-G-112 35
Ai, Qing	TPP-I-122	37	Aoki, Kumi	EEC-H-222 51	Balaji, Chakravarthy	TMG-K-523 92	Bierman, David	SOL-B2-223 42
Ai, Qing	RAD-J-415	76	Arakaki, Eisuke	MLT-H-112 36	Balakrishnan, Arcot R.	FBL-B1-232 41	Birkett, Matthew	TST-I-234 53
Aiguier, T.	EVP-B1-123	29	Araki, Fuyuto	BMA-E-223 47	Baltis, Coen	TPB-B2-122 30	Biswal, Pratibha	NCV-F-413 72
Ait Saada, Mebrouk	EVP-B1-214	40	Araki, Takuto	FCL-H-122 36	Bandara, Arunima	SOL-B2-211 41	Biwole, Pascal Henry	TMG-K-531 93
Ajaev, Vladimir	EVP-B1-115	29	Araneo, Lucio	TPA-B2-111 30	Bandara, Thilaksiri	TPM-B2-525 80	Blakers, Andrew	SOL-B2-221 42
Akaiwa, Ryota	TTR-C2-124	32	Aravinthan, Manoharan	FBL-B1-232 41	Bandaru, Nanda Kishor	BMA-E-113 33	Blandre, Etienne	NMM-G-533 87
Akamatsu, Masato	FCV-F-312	61	Arik, Mehmet	NCV-F-426 72	Bang, In Cheol	PBL-B1-523 78	Bode, Florin	TTR-C2-125 32
Akiyama, Sayaka	PBL-B1-421	67	Arik, Mehmet	HTE-C2-515 82	Bannikov, Aleksey	SOL-B2-214 41	Bode, Florin	NSM-H-326 63
Akiyama, Shinsaku	IPJ-C1-313	59	Arima, Hirofumi	TPF-B2-313 58	Bao, Hua	RAD-J-322 65	Bodla, Karthik K.	PMD-I-411 75
Akoshima, Megumi	MNF-E-123	33	Arima, Hirofumi	TPF-B2-321 58	Bao, Hua	NMM-G-524 86	Bohn, Dieter	HTE-C2-513 82
Aksan, Alptekin	BMA-E-222	47	Arimoto, Hidenobu	MIN-C1-234 44	Bao, Jiajian	TPP-I-116 37	Boltenko, Eduard	HTE-C2-225 45
Aktas, Murat K.	NCV-F-416	72	Arimoto, Hidenobu	MIN-C1-236 44	Baptista, João	CNV-C1-532 82	Borovoy, Volf	FCV-C1-114 31
Akwaboa, Stephen	FCV-F-323	61	Armfield, Steven	NCV-F-515 84	Barbosa, Jader	HEX-G-212 49	Bortolin, Stefano	CDS-J-124 38
Al Hadad, Waseem	INV-E-216	47	Armfield, Steven W.	NSM-H-322 63	Bar-Cohen, Avram	EEC-H-214 51	Bortolin, Stefano	CDS-J-125 38
Al Qubeissi, Mansour	EVP-B1-122	29	Artemov, Valerij	CDS-J-114 38	Bar-Cohen, Avram	FCV-F-321 61	Bottarelli, Michele	PMD-I-534 90
Albaret, Tristan	NMM-G-533	87	Asano, Hitoshi	FCL-H-123 36	Barry, Matthew	TEL-K-324 66	Bouchenna, Chafea	EVP-B1-214 40
Alcalde, Diego	HEX-G-212	49	Asano, Hitoshi	FBL-B1-312 57	Basak, Tanmay	NCV-F-413 72	Bougher, Thomas	NMM-G-423 73
Alifanov, Oleg	INV-E-213	47	Asano, Motoharu	MNF-E-125 33	Basak, Tanmay	MCV-D-512 84	Boyard, Nicolas	MIN-C1-213 43
Alifanov, Oleg	RAD-J-421	76	Asano, Motoharu	TEL-K-322 66	Baskan, Özge	HTE-C2-525 83	Brandon, Nigel	FCL-H-125 36
Alimohammadi, Sajad	HTE-C2-523	83	Ashraf, Awais	SOL-B2-211 41	Batzdorf, Stefan	TDY-C1-414 69	Brauner, Neima	MIN-C1-224 43

Brauner, Neima	HTE-C2-524 83	Chehayeb, Karim	EEF-K-234 56	Cheng, Wen-Long	TPP-I-111 37	Collins, Michael	TPM-B2-522 80
Brouilliot, Denis	HTE-C2-424 70	Chen, Andrew	GTB-G-416 73	Cheng, Xuetao	HTE-C2-511 82	Colombo, Luigi	HTE-C2-322 60
Brum, Fabio	TPM-B2-524 80	Chen, Baoming	PMD-I-413 75	Cheng, Yu-Chi	NMS-C2-212 44	Combeau, Hervé	PBL-B1-424 67
Brus, Grzegorz	PMD-I-426 75	Chen, Bin	HEX-G-121 35	Cheng, Ze-Dong	SOL-B2-224 42	Corberan, Jose	CDS-J-235 55
Brutin, David	FCV-F-314 61	Chen, Bin	PPE-G-113 35	Cheon, Jong	CDS-J-113 38	Corre, Yann	PLS-K-316 66
Buchlin, Jean-Marie	CND-H-513 87	Chen, Bin	BMA-E-221 47	Cheung, Sherman C. P.	TPM-B2-525 80	Corticelli, Mauro A.	EVP-B1-121 29
Buckinx, Geert	PMD-I-524 89	Chen, Bin	SAT-J-511 90	Cheverda, Vyacheslav	FLM-H-533 88	Cotta, Renato M.	NSM-H-323 63
Budnik, Sergey	INV-E-213 47	Chen, Chien-Jen	TMG-K-521 92	Chiashi, Shohei	NMM-G-421 73	Coyle, Tom	FCV-F-232 49
Budnik, Sergey	RAD-J-421 76	Chen, Cong	NSM-H-325 63	Chiashi, Shohei	NMM-G-424 73	Crouseilles, Nicolas	RAD-J-314 65
Bühler, Simon	PMD-I-515 89	Chen, Guidong	HEX-G-234 50	Chiba, Takaaki	NMM-G-421 73	Cruz, Carlos C. S.	FCV-C1-113 31
Buonomo, Bernardo	MCV-D-513 84	Chen, Hongyin	TPP-I-212 52	Chien, Kuo-Hsiang	NMS-C2-212 44	Cruz, Manuel Ernani	RNE-C1-324 59
Burger, Francois H.	CND-H-414 74	Chen, Ing Youn	TMG-K-521 92	Chien, Liang-Han	CDS-J-212 54	Cui, Kehang	NMM-G-421 73
Burgers, John	TST-I-234 53	Chen, Jian	FCV-C1-112 31	Chien, Nguyen Ba	FBL-B1-233 41	Cui, Wujun	TMG-K-513 92
Burghold, Michael	MNF-E-124 33	Chen, Jiannan	SAT-J-513 90	Chikahisa, Takemi	PMD-I-425 75	Cui, Zhendong	TPN-B2-423 68
Bykovskaya, Elena	EVP-B1-115 29	Chen, JinnKuen	INV-E-212 47	Chikh, Salah	EVP-B1-214 40	Cui, Zheng	TMG-K-512 92
Caballina, Ophélie	MIN-C1-225 43	Chen, Kai	RNE-C1-321 59	Childs, Peter RN	EES-K-126 39	Cui, Zheng	TMG-K-525 92
Cai, Jun	HTE-C2-535 83	Chen, Lifei	TPP-I-115 37	Chillà, Francesca	MIN-C1-226 43	D`yachenko, Alex	TTR-C2-111 32
Caliot, Cyril	PMD-I-316 64	Chen, Lihong	FCV-F-322 61	Chilukoti, Hari Krishna	NMM-G-521 86	Dag, Yusuf	FCV-F-323 61
Cannon, James	TDY-C1-411 69	Chen, Lin	FCV-F-223 48	Chinige, Sampath Kumar	PMD-I-412 75	Dai, Ren	CNV-C1-525 81
Cao, Bing-Yang	TPP-I-215 52	Chen, Lin	EEF-K-221 56	Cho, Hyung-Hee	HTE-C2-412 70	Daiguji, Hirofumi	NMM-G-531 87
Cao, Bing-Yang	CND-H-413 74	Chen, Lin	NMM-G-526 86	Cho, Keumnam	HEX-G-232 50	Daisho, Yasuhiro	CMB-J-531 91
Cao, Jianping	TDY-C1-513 81	Chen, Lingyu	PMD-I-326 64	Choi, Kwang II	FBL-B1-233 41	Dalmas, Sergio	CND-H-412 74
Cao, Zhi-Hong	FCV-F-326 61	Chen, Min	NMS-C2-213 44	Chong, Kai-Leong	NCV-F-415 72	Dang, Chaobin	FBL-B1-234 41
Cao, Zhi-Hong	MCV-D-515 84	Chen, Qin	RAD-J-424 76	Chouffart, Quentin	MFP-G-314 62	Dang, Chaobin	ADS-D-213 46
Carey, Van	EVP-B1-124 29	Chen, Qun	TMG-K-535 93	Christophe, Batsale Jean	TPA-B2-113 30	Dang, Guoxin	FCV-F-322 61
Carle, Florian	FCV-F-314 61	Chen, Xiaoqing	PMD-I-532 90	Christophe, Pradere	TPA-B2-113 30	Darson Li, Dezheng	HTE-C2-232 45
Carrington, David B.	CPM-E-413 71	Chen, Xingjian	EEF-K-223 56	Christopher, David M.	PBL-B1-425 67	Das, Apurba	CND-H-524 88
Cartalade, Alain	CPM-E-421 71	Chen, Yan	EEF-K-223 56	Crhistopher, David	CPM-E-415 71	Das, Sarit Kumar	BMA-E-113 33
Castanet, Guillaume	MIN-C1-225 43	Chen, Yan	HPP-K-421 77	Chu, Chen-Xi	HEX-G-122 35	Das, Sarit Kumar	FBL-B1-232 41
Cavadini, Philipp	MTR-F-114 34	Chen, Yanjun	TPS-B2-515 79	Chu, Kuang-Han	NMS-C2-215 44	Das, Sarit Kumar	NMM-G-514 86
Cetindag, Semih	NCV-F-416 72	Chen, Yi-min	NMM-G-526 86	Chua, Kian Jon	CMB-J-536 91	Das, Sudev	PBL-B1-532 79
Cha, Minsuk	CMB-J-526 91	Chen, Ying	CND-H-425 74	Chua, Kian Yong	CMB-J-536 91	Davaa, Ganbat	CNV-C1-533 82
Chai, Zhiyong	NMM-G-522 86	Chen, Yitung	HTE-C2-321 60	Chudnovsky, Yaroslav	HTE-C2-522 83	Daverat, Christophe	NCV-F-516 84
Chalopin, Yann	TPP-I-214 52	Chen, Yong	RAD-J-326 65	Chung, Sukho	CMB-J-526 91	Dayal, Ram	TPM-B2-534 80
Chandra, Sanjeev	MTR-F-111 34	Chen, Yong-Chang	PMD-I-313 64	Chyu, Minking K.	TEL-K-324 66	De Kerpel, Kathleen	TPF-B2-311 58
Chandra, Sanjeev	FCV-F-232 49	Chen, Yongping	NMM-G-513 86	Cindy, Hany	TPA-B2-113 30	De Kerpel, Kathleen	PMD-I-324 64
Chang, Chao	HPP-K-424 77	Chen, Yunfei	TPP-I-116 37	Clercx, Herman J. H.	HTE-C2-525 83	de Marchi Neto, Ismael	CND-H-522 88
Chang, Chao	HTE-C2-532 83	Chen, Zhihao	PBL-B1-324 57	Coelho, Pedro J.	RAD-J-314 65	De Paepe, Michel	HEX-G-222 50
Chang, Siyuan	BMA-E-225 47	Cheng, Chuanxiao	PMD-I-315 64	Coimbra, Carlos	SOL-B2-233 42	De Paepe, Michel	TPF-B2-311 58
Chang, Xinyu	FCV-F-322 61	Cheng, Lin	HTE-C2-311 60	Cola, Baratunde	NMM-G-423 73	De Paepe, Michel	RNE-C1-325 59
Chapuis, Pierre-Olivier	RAD-J-325 65	Cheng, Lin	HPP-K-421 77	Colaco, Marcelo	INV-E-214 47	De Paepe, Michel	PMD-I-323 64
Chatterjee, Barun	HTE-C2-531 83	Cheng, Lin	TMG-K-512 92	Colin, Catherine	EVP-B1-211 40	De Paepe, Michel	PMD-I-324 64
Che, Zhizhao	TBF-D-223 46	Cheng, Lin	TMG-K-525 92	Colin, Catherine	FBL-B1-314 57	de Pinho, Jean	RNE-C1-324 59
Cheaib, Farah	EEF-K-234 56	Cheng, Ling	TPF-B2-324 58	Colin, Catherine	PBL-B1-524 78	De Salve, Mario	CDS-J-215 54

De Schampheleire, Sven	PMD-I-323 64	Dombrovsky, Leonid	RAD-J-311 65	Enright, Ryan	FCV-F-222 48	France-Lanord, Arthur	NMM-G-533 87
De Schampheleire, Sven	PMD-I-324 64	Dombrovsky, Leonid	RAD-J-312 65	Enright, Ryan	CDS-J-232 55	Frekers, Yona	CND-H-511 87
de Vahl Davis, Graham	NCV-F-512 84	Dombrovsky, Leonid	RAD-J-316 65	Enright, Ryan	CDS-J-236 55	Freko, Pascal	HEX-G-235 50
De Wolf, Ingrid	EEC-H-234 52	Dombrovsky, Leonid	RAD-J-421 76	Enright, Ryan	ECS-K-212 55	Freystein, Martin	TPB-B2-123 30
Dedov, A.V.	TPB-B2-124 30	Domingues, Gilberto	PMD-I-316 64	Errera, Marc	CND-H-421 74	Frizzell, Ronan	ECS-K-212 55
Dedov, Aleksey	HTE-C2-225 45	Dong, Bin	CDS-J-221 54	Escudié, Dany	CMB-J-532 91	Fronk, Brian M.	CDS-J-112 38
Defresne, Gérard	NCV-F-414 72	Dong, Wei	TBF-D-226 46	Esfarjani, Keivan	PPE-G-114 35	Fu, Benwei	HPP-K-425 77
Degiovanni, Alain	MIN-C1-235 44	Dong, Wei	TPN-B2-422 68	Eshima, Shotaro	ECS-K-211 55	Fu, Bo	CND-H-424 74
Degroote, Joris	HEX-G-222 50	Dong, Yuan	TPP-I-215 52	Esmeelpanah, Javad	FCV-F-232 49	Fu, Dong	EEF-K-223 56
Deguchi, Yoshihiro	MIN-C1-222 43	Donnelly, Brian	EEC-H-233 52	Estiot, Elise	HTE-C2-325 60	Fu, Po-Chin	RAD-J-422 76
Deguchi, Yoshihiro	MIN-C1-223 43	Donnelly, Brian	TPF-B2-314 58	Eswaran, Viktor	HTE-C2-233 45	Fu, Rong	BMA-E-116 33
Del Col, Davide	CDS-J-124 38	Dorey, Luc-Henry	CMB-J-535 91	Eswaran, Vinayak	PLS-K-311 66	Fu, RuiPeng	IPJ-C1-312 59
Del Col, Davide	CDS-J-125 38	Drevillon, Jeremie	TMG-K-532 93	Everett, Vernie	SOL-B2-221 42	Fu, Yuan-Xiang	CND-H-512 87
Delaunay, Didier	MIN-C1-213 43	du Toit, C.G.	CPM-E-424 71	Everts, Marilize	CNV-C1-524 81	Fujii, Hikari	PMD-I-534 90
Delaunay, Didier	RAD-J-311 65	du Toit, Charl G	RAD-J-414 76	Ewim, Daniel R.E.	CDS-J-121 38	Fujimoto, Shu	GTB-G-411 73
Delsipée, M.	CND-H-513 87	Du, Chun-Xu	PMD-I-313 64	Ezzahri, Younes	TMG-K-532 93	Fujimura, Hideo	MLT-H-112 36
Deng, Zilong	NMM-G-513 86	Du, Jia-di	CDS-J-234 55	Fan, H.	MTR-F-111 34	Fujino, Hirokazu	ACR-G-324 62
Deppermann, Marc	MNF-E-124 33	Du, Wenjing	HTE-C2-311 60	Fan, Li-Wu	PBL-B1-531 79	Fujioka, Keiko	ECS-K-215 55
Deppermann, Marc	CND-H-511 87	Du, Wenjing	HPP-K-421 77	Fan, Xiao-wei	CDS-J-234 55	Fujioka, Ryota	MIN-C1-234 44
Derby, Melanie	CDS-J-123 38	Du, Xiaoze	TST-I-236 53	Fan, Yilin	TMG-K-511 92	Fujisaki, Takashi	NCV-F-421 72
Desgrosseilliers, Louis	CND-H-515 87	Du, Xiaoze	EEF-K-221 56	Fang, Chiao-Li	EEC-H-232 52	Fukai, Jun	ECS-K-211 55
Dessiatoun, Serguei	HEX-G-124 35	Du, Xiaoze	HTE-C2-313 60	Fang, Xing	RAD-J-322 65	Fukatani, Yuki	EVP-B1-114 29
Dezan, Daniel	OPT-F-524 85	Du, Xiaoze	FCV-F-315 61	Fariñas Alvariño, Pablo	NMM-G-422 73	Fukuda, Katsuya	HTE-C2-516 82
Dhir, Vijay K.	HTE-C2-416 70	Du, XiaoZe	CND-H-526 88	Fedorets, Alexander	EVP-B1-116 29	Fukunaga, Takanobu	BMA-E-222 47
Di Federico, Vittorio	PMD-I-534 90	Duan, Fei	GTB-G-414 73	Feng, Shiyu	ADS-D-213 46	Fukuyama, Yuta	PBL-B1-515 78
Di Marco, Paolo	TBF-D-221 46	Duan, Xinyue	NSM-H-324 63	Feng, Yanhui	PLS-K-312 66	Fumeron, Sebastien	NMM-G-535 87
Diani, Andrea	FBL-B1-235 41	Dubrac, Benoît	PBL-B1-424 67	Feng, Zaichun	INV-E-212 47	Funatani, Shumpei	ACR-G-322 62
Diao, Yanhua	HTE-C2-426 70	Duluc, Marie-Christine	NCV-F-414 72	Feoktistov, Dmitry	EVP-B1-115 29	Fushinobu, Kazuyoshi	ADS-D-214 46
Dietl, Jochen	TPB-B2-123 30	Dumortier, Mikael	SOL-B2-226 42	Ferret, Bernard	TPS-B2-512 79	Fustinoni, Damiano	HTE-C2-322 60
Dietl, Jochen	PBL-B1-322 57	Duran Medina, Olmo	HTE-C2-221 45	Fichot, Florian	PBL-B1-413 67	Gaeini, Mohammadreza	TST-I-231 53
Dietrich, Benjamin	PMD-I-311 64	Duru, Paul	PBL-B1-413 67	Filippeschi, Sauro	TPA-B2-111 30	Gajbhiye, N. L	HTE-C2-233 45
Ding, Jie	PBL-B1-516 78	Egami, Yasuhiro	FBL-B1-221 40	Fischedick, Thomas	PMD-I-311 64	Gajbhiye, Narendra	PLS-K-311 66
Ding, Jing	ADS-D-216 46	Eggers, Jan	TPP-I-223 53	Fischer, Sebastian	TDY-C1-414 69	Galizzi, Cédric	CMB-J-532 91
Ding, Jing	TPP-I-212 52	Eggers, Jan	NMT-F-532 85	Fisher, Timothy S.	TMG-K-522 92	Gambaryan-Roisman, Tatiana	MTR-F-124 34
Ding, Jing	PBL-B1-521 78	Egorov, Ivan	FCV-C1-114 31	Flamant, Gilles	PMD-I-316 64	Gambaryan-Roisman, Tatiana	TDY-C1-414 69
Ding, Yu-Dong	FLM-H-535 88	Egorov, Kirill	FCV-C1-125 31	Fly, Ashley	CDS-J-226 54	Gambaryan-Roisman, Tatiana	TPM-B2-534 80
Dirker, Jaco	FCV-C1-111 31	Ehrenpreis, Claas	FCV-F-311 61	Fody, Josh	HEX-G-124 35	Gan, Lianghua	PLS-K-313 66
Dirker, Jaco	CDS-J-116 38	Ehrlich, Leicester	TMG-K-526 92	Fominykh, Andrew	TPM-B2-531 80	Gao, Dong-Dong	PMD-I-313 64
Dirker, Jaco	CDS-J-121 38	Eigenfeld, Klaus	FCV-F-233 49	Fontanesi, Claudio	EES-K-116 39	Gao, Hongtao	NSM-H-313 63
Dirker, Jaco	FCV-F-212 48	Ekaid, Ali L.	FCV-C1-123 31	Fornalik-Wajs, Elzbieta	HTE-C2-234 45	Gao, Jianmin	TDY-C1-426 69
Dirker, Jaco	FCV-F-215 48	Ekkad, Srinath	HTE-C2-421 70	Foroushani, Seyed S. M.	NCV-F-422 72	Gao, Jianmin	HTE-C2-514 82
Dirker, Jaco	CND-H-414 74	Eliçabe, Guillermo E.	BMA-E-114 33	Fossa, Marco	HTE-C2-422 70	Gao, Tao	EEF-K-231 56
Do, Kyu Hyung	EVP-B1-112 29	Elperin, Tov	TPM-B2-531 80	Fraigneau, Yann	NCV-F-414 72	Gao, Tao	NMM-G-534 87
Dogruoz, Baris	HTE-C2-515 82	Endo, Akira	NMM-G-531 87	Fraigneau, Yann	NCV-F-513 84	Gao, Tieyu	TDY-C1-426 69

Gao, Wei	FCV-C1-115 3	31	Gradeck, Michel	MIN-C1-225 43	Hao, Min	EES-K-112	39	Heikal, Morgan	EVP-B1-122 29
Gao, Wei	CMB-J-533 9	91	Gradinger, Thomas	EEC-H-223 51	Hara, Shumpei	TTR-C2-123	32	Helcig, Christian	TDY-C1-516 81
Gao, Xuan	GTB-G-414 7	73	Gramazio, Pasqualino	HTE-C2-322 60	Hara, Tomoko	PMD-I-521	89	Hendricks, Terry	NMS-C2-215 44
Garach, Darshik V.	FCV-F-215 4	18	Grenard, Philippe	CMB-J-535 91	Haramura, Yoshihiko	FCV-F-221	48	Hensler, Thomas R.	EEF-K-223 56
Garbrecht, Oliver	MIN-C1-233 4	14	Griffin, Justin	TMG-K-515 92	Haramura, Yoshihiko	PBL-B1-415	67	Hernandez, Daniel	MIN-C1-221 43
Garbrecht, Oliver	FCV-F-311 6	61	Gross, Ullrich	FCV-F-231 49	Harmand, Souad	HTE-C2-221	45	Herwig, Heinz	TTR-C2-115 32
García del Valle, Javier	NMM-G-422 7	73	Gross, Ulrich	FCV-F-233 49	Haruki, Naoto	PMD-I-421	75	Herwig, Heinz	TDY-C1-421 69
García-Cascales, José Ramón	TPB-B2-121 3	30	Groulx, Dominic	CND-H-515 87	Haruki, Naoto	HTE-C2-536	83	Herwig, Heinz	TDY-C1-424 69
García-Cascales, José Ramón	TPB-B2-125 3	30	Groulx, Dominic	TMG-K-531 93	Hasegawa, Daisuke	NMM-G-424	73	Herz, Fabian	MFP-G-311 62
García-Cascales, José Ramón	TPM-B2-521 8	30	Gu, Jingchen	CND-H-514 87	Hasegawa, Koji	PBL-B1-522	78	Hetsroni, Gad	FCV-F-321 61
Gardarein, Jean-Laurent	PLS-K-316 6	66	Gu, Xiaoguang	SOL-B2-216 41	Hasegawa, Yosuke	TBF-D-222	46	Hewitt, Geoffery	TPN-B2-424 68
Garimella, Srinivas	CDS-J-112 3	38	Guan, Ning	NMM-G-515 86	Hasegawa, Yosuke	HTE-C2-316	60	Hewitt, Geoffrey F.	TPF-B2-323 58
Garimella, Suresh V.	PMD-I-411 7	75	Guevelou, Simon	PMD-I-316 64	Hasmady, Saiful	ADS-D-214	46	Hey, Jonathan	ECS-K-214 55
Garnier, Charles	NCV-F-513 8	34	Guo, Xiaofeng	TMG-K-511 92	Hassel, Egon	HTE-C2-522	83	Hidema, Ruri	FCV-F-214 48
Gaspar, Jonathan	PLS-K-316 6	66	Guo, Zengyuan	MLT-H-114 36	Hatakeyama, Tomoyuki	MIN-C1-216	43	Hidema, Ruri	HEX-G-236 50
Gatapova, Elizaveta	EVP-B1-115 2	29	Guo, Zeng-Yuan	TPP-I-215 52	Hatakeyama, Tomoyuki	EEC-H-211	51	Higurashi, Tomohiro	NMS-C2-211 44
Ge, Minghui	CDS-J-221 5	54	Guo, Zeng-Yuan	TMG-K-516 92	Hattori, Yasuo	FCV-C1-124	31	Hihara, Eiji	FBL-B1-234 41
Ge, Zhengwei	NMM-G-426 7	73	Guo, Zhen	FCL-H-126 36	Hattori, Yasuo	NCV-F-511	84	Hihara, Eiji	ADS-D-213 46
Gelfgat, Alexander	CPM-E-426 7	71	Guo, Zhen	TMG-K-514 92	Haussener, Sophia	SOL-B2-226	42	Hirahata, Hideto	BMA-E-222 47
George, Pradeep	MFP-G-315 6	62	Gupta, Akhilesh	HTE-C2-531 83	Haustein, Herman	FCV-F-311	61	Hirai, Shuichiro	ECS-K-213 55
Georgoulas, Anastasios	TPM-B2-533 8	30	Gustafsson, Andreas	EES-K-124 39	Hawkes, Evatt	SOL-B2-211	41	Hirai, Shuichiro	PMD-I-531 90
Ghaffari, Omidreza	HTE-C2-515 8	32	Gustavsen, Arild	EEF-K-231 56	Hawkes, Evatt	SOL-B2-216	41	Hirasawa, Shigeki	OPT-F-525 85
Ghajar, Afshin J.	NMM-G-511 8	36	Gustavsen, Arild	NMM-G-534 87	Hayashi, Kosuke	TBF-D-221	46	Hirata, Katsuya	NCV-F-514 84
Ghanta, Nikhilesh	PMD-I-412 7	75	Hachiya, Kohei	HTE-C2-536 83	He, Sisi	TPP-I-116	37	Hirata, Takuya	EEC-H-222 51
Gharibdoust, Kiarash	EEF-K-222 5	56	Haddada, Jalaluddin	HEX-G-125 35	He, Wangbo	TEL-K-325	66	Ho, Jin Yao	PBL-B1-535 79
Ghoshdastidar, Partha	HEX-G-123 3	35	Hafeez, Pakeeza	FCV-F-232 49	He, Wei	TEL-K-326	66	Hodes, Marc	FCV-F-222 48
Gilblas, Remi	MIN-C1-221 4	13	Haghighi, Ehsan B.	TMG-K-514 92	He, Y L	PPE-G-113	35	Hodson, Stephen L.	TMG-K-522 92
Giroux-Julien, Stéphanie	HTE-C2-422 7	70	Hagino, Harutoshi	TEL-K-323 66	He, Y L	BMA-E-221	47	Hoelzl, Reinhold	HEX-G-235 50
Gnanasekaran, Nagarajan	INV-E-211 4	17	Hagiwara, Yoshimichi	TTR-C2-124 32	He, Yaling	TST-I-236	53	Hokazono, Masahiro	TEL-K-323 66
Goddard, Joe	TDY-C1-416 6	69	Haishi, Tomoyuki	MIN-C1-215 43	He, YaLing	IPJ-C1-312	59	Hokoi, Shuichi	HTE-C2-521 83
Goepper, Flora	PBL-B1-424 6	67	Hakoume, Donia	RAD-J-311 65	He, Ya-Ling	EVP-B1-111	29	Holfeld, Anna	HTE-C2-315 60
Goetze, Pitt	FCV-F-231 4	19	Hall, Wayne	MCV-D-511 84	He, Ya-Ling	MLT-H-115	36	Holfeld, Anna	HTE-C2-323 60
Goetze, Pitt	FCV-F-233 4	19	Ham, Heecheol	HTE-C2-412 70	He, Ya-Ling	SOL-B2-224	42	Holloway, Caleb	EEC-H-214 51
Goldstein, Richard	GTB-G-411 7	73	Hamamoto, Yoshinori	ADS-D-215 46	He, Ya-Ling	CDS-J-234	55	Honda, Itsuro	FBL-B1-221 40
Gomyo, Taisaku	FBL-B1-312 5	57	Hamamoto, Yoshinori	RAD-J-426 76	He, Yan	TPP-I-113	37	Hong, Chungpyo	FCV-F-224 48
Gong, Feifei	TPS-B2-513 7	79	Han, Haoxue	NMM-G-425 73	He, Yinghe	NSM-H-322	63	Hong, Chungpyo	PBL-B1-511 78
Gong, Liang	NSM-H-324 6	63	Han, Je-Chin	GTB-G-416 73	He, Zhenzong	INV-E-215	47	Hong, Jiaju	TPN-B2-414 68
Gong, Liang	PMD-I-423 7	75	Han, Kyu-Hyun	EES-K-125 39	He, Zhen-zong	RAD-J-424	76	Hori, Takuma	PPE-G-114 35
Gonzálvez-Maciá, Jose	CDS-J-235 5	55	Han, Sunwoo	TPP-I-211 52	He, Zhiguang	EEF-K-224	56	Horibe, Akihiko	PMD-I-421 75
Gorecki, Grzegorz	HEX-G-224 5	50	Han, Wei	TPM-B2-532 80	He, Zhiguang	OPT-F-523	85	Horibe, Akihiko	HTE-C2-536 83
Gorecki, Grzegorz	CPM-E-412 7	71	Han, Youngbae	TBF-D-222 46	He, ZhongYang	RNE-C1-321	59	Horiki, Sachiyo	TPF-B2-312 58
Goto, Seiji	CNV-C1-523 8	31	Hanazaki, Hideshi	IPJ-C1-313 59	Heath, Melissa	MCV-D-511	84	Hosoda, Masava	NMM-G-523 86
Gouriet, Jean-Baptiste	PLS-K-314 6	6	Hanks, Daniel	FLM-H-534 88	Heidari, Mahbod	EEF-K-222	56	Hossain, MD. Anowar	CDS-J-211 54
Gradeck, Michel	EVP-B1-123 2	29	Hanuskova, Miriam	EES-K-116 39	Heidemann, Wolfgang	EEF-K-233	56	Hotta, Ryutaro	HPP-K-413 77
							,		· · · · · · · · · · · · · · · · · · ·
Hou, Xiao-Huang	PMD-I-313 64	Inaoka, Kyoji	HEX-G-223 50	Jeng, Ming-Shan	NMS-C2-212 44	Kabov, Oleg	EVP-B1-116 29		
-----------------------	---------------	---------------------	---------------	--------------------	---------------	-----------------------	---------------		
Houra, Tomoya	TTR-C2-112 32	Inaoka, Kyoji	HTE-C2-411 70	Jensen, Michael K.	CDS-J-123 38	Kabov, Oleg	FLM-H-533 88		
Hsieh, Yuan-Ta	EEC-H-232 52	Inoue, Gen	FCL-H-121 36	Jeong, Jae Jun	HEX-G-213 49	Kabova, Yulia	FLM-H-533 8		
Hu, Dinghua	EVP-B1-126 29	Inoue, Satoshi	ACR-G-324 62	Jeong, Jae-jun	CDS-J-113 38	Kaczorowski, Matthias	NCV-F-415 72		
Hu, Guo-Jie	MLT-H-114 36	Inoue, Shuhei	MNF-E-121 33	Jeong, Ji-Hwan	HEX-G-213 49	Kagawa, Masaru	MLT-H-112 3		
Hu, Jibin	TPN-B2-413 68	Inoue, Taiki	NMM-G-424 73	Ji, Wen-Tao	EVP-B1-111 29	Kajishima, Takeo	CDS-J-213 54		
Hu, Ya-Cai	PBL-B1-531 79	Irokawa, Toshio	RAD-J-321 65	Ji, Wen-tao	CDS-J-234 55	Kajita, Yasushi	MIN-C1-216 4		
Hu, Yuanchen	HTE-C2-416 70	Isaev, Sergey	HTE-C2-522 83	Ji, Yingying	HPP-K-422 77	Kakuta, Naoto	MIN-C1-234 4		
Hua, Yu-Chao	CND-H-413 74	Ishiguro, Syuhei	ACR-G-322 62	Ji, Yulong	HPP-K-424 77	Kakuta, Naoto	MIN-C1-236 4		
Huai, Xiulan	TPN-B2-423 68	Ishizaki, Takuya	MNF-E-122 33	Ji, Yulong	HTE-C2-532 83	Kamada, Toshimitsu	ACR-G-324 6		
Huai, Xiulan	HTE-C2-535 83	Ishizuka, Masaru	MIN-C1-216 43	Jia, Hui	HTE-C2-414 70	Kamimoto, Takahiro	MIN-C1-222 4		
Huang, Baoling	PPE-G-115 35	Ishizuka, Masaru	EEC-H-211 51	Jia, Lisi	CND-H-425 74	Kamimoto, Takahiro	MIN-C1-223 4		
Huang, Baoling	TPP-I-225 53	Ito, Daisuke	HEX-G-215 49	Jia, Mingxing	SOL-B2-234 42	Kaneda, Masayuki	NMS-C2-214 4		
Huang, Lingyan	PBL-B1-536 79	Ito, Daisuke	PBL-B1-325 57	Jia, Teng	INV-E-215 47	Kaneda, Masayuki	FCV-F-312 6		
Huang, Shanbo	PMD-I-423 75	Ito, Kohei	MIN-C1-215 43	Jiang, Dongyue	CMB-J-536 91	Kaneko, Akiko	CDS-J-225 5		
Huang, Shi-Di	NCV-F-415 72	Ito, Yasumasa	TTR-C2-113 32	Jiang, Fangming	MTR-F-121 34	Kaneko, Toshihiro	FCV-F-234 4		
Huang, Simin	FCV-F-313 61	Ivanov, Nikolay	HEX-G-231 50	Jiang, Guilin	NMM-G-515 86	Kaneko, Toshihiro	PBL-B1-511 7		
Huang, Suyi	EES-K-115 39	Iwai, Hiroshi	PMD-I-426 75	Jiang, Lanlan	TPP-I-121 37	Kang, Kyong-ho	CDS-J-113 3		
Huang, Yichuan	TPN-B2-411 68	Iwai, Hiroshi	PMD-I-511 89	Jiang, Lanlan	TPP-I-213 52	Kang, Yoon Goo	HTE-C2-412 7		
Huang, Yong-Hua	TPP-I-111 37	Iwaki, Chikako	NCV-F-412 72	Jiang, Lanlan	PMD-I-326 64	Kannengieser, Olivier	PBL-B1-524 7		
Huang, Zheng	PMD-I-415 75	Iwamoto, Kaoru	GTB-G-412 73	Jiang, Peixue	PMD-I-415 75	Kara, Sami	NSM-H-311 6		
Huisseune, Henk	HEX-G-222 50	Iwamoto, Kaoru	HPP-K-426 77	Jiang, Peixue	SAT-J-513 90	Kariya, Keishi	FBL-B1-311 5		
Huisseune, Henk	PMD-I-323 64	Iwata, Minoru	RAD-J-321 65	Jiang, Pei-Xue	CND-H-423 74	Karlov, Sergey	TDY-C1-413 6		
Huisseune, Henk	PMD-I-324 64	Jackson, Matthew	PMD-I-523 89	Jiang, Shengyao	TPN-B2-411 68	Karnauhova, Ekaterina	EVP-B1-115 2		
Huo, Yongzhan	TEL-K-325 66	Jacques, Lionel	RAD-J-423 76	Jiang, Yi	MTR-F-112 34	Kataoka, Isao	NCV-F-421 7		
Huxtable, Scott	HTE-C2-421 70	Jadhav, Ravi S.	HTE-C2-231 45	Jiang, Yu Yan	FBL-B1-315 57	Kato, Taro	HPP-K-413 7		
Hwang, Seongwon	HEX-G-213 49	Jäeckel, Eva	FCV-F-233 49	Jiao, Kui	TEL-K-325 66	Kato, Yohei	FCV-F-221 4		
Hwang, Seyun	TPN-B2-412 68	Jaluria, Yogesh	MFP-G-315 62	Jiao, LiFang	MIN-C1-232 44	Kato, Yukitaka	ECS-K-215 5		
lacovides, Hector	HEX-G-233 50	Jaluria, Yogesh	CNV-C1-533 82	Jiao, Yafei	CND-H-525 88	katsuki, Ryoji	NCV-F-412 7		
Ichikawa, Takahiro	HPP-K-415 77	Jambal, Odgerel	CNV-C1-533 82	Jiao, Yuhe	EES-K-124 39	Katsuta, Masafumi	HPP-K-413 7		
Ichimiya, Koichi	ACR-G-322 62	Jang, Seok Pil	RNE-C1-326 59	Jige, Daisuke	EEC-H-231 52	Kauppinen, Esko	NMM-G-421 7		
Ihara, Takeshi	EEF-K-231 56	Jannot, Y.	INV-E-216 47	Jin, Shiping	EES-K-115 39	Kawada, Shoko	TTR-C2-123 3		
lida, Oaki	TTR-C2-121 32	Jarrahi, Mojtaba	NCV-F-414 72	Jin, Yan	TTR-C2-115 32	Kawaguchi, Tatsuya	MFP-G-312 6		
Ikegami, Yasuyuki	TPF-B2-313 58	Jean, Adrien	TPS-B2-512 79	Jones, Barclay	TPM-B2-522 80	Kawaguchi, Tohru	TDY-C1-411 6		
Ikuta, Tatsuya	CDS-J-223 54	Jean, Toutain	TPA-B2-113 30	Joshi, Yogendra	PBL-B1-321 57	Kawaguchi, Yasuo	TTR-C2-123 3		
Ikuta, Tatsuya	NMM-G-532 87	Jean, Valentin	NMM-G-533 87	Joulain, Karl	TMG-K-532 93	Kawai, Akio	MLT-H-113 3		
Illán-Gómez, Fernando	TPB-B2-121 30	Jean, Valentin	NMM-G-535 87	Ju, Xing	TST-I-236 53	Kawaji, Masahiro	TST-I-234 5		
Illán-Gómez, Fernando	TPB-B2-125 30	Jeffers, Nicholas	TPA-B2-114 30	Ju, Yongh S.	HTE-C2-416 70	Kawakami, Ryoichi	TPF-B2-324 5		
Illán-Gómez, Fernando	TPM-B2-521 80	Jeffers, Nicholas	TMG-K-526 92	Juang, Ying-Zong	EEC-H-232 52	Kawamura, Yosuke	TPA-B2-115 3		
Illias, Suhaimi	MIN-C1-212 43	Jeffers, Nick	EEC-H-233 52	Jun, Jisu	CPM-E-424 71	Kawanami, Osamu	FBL-B1-221 4		
Im, Ik-Tae	BMA-E-111 33	Jeffers, Nick	TMG-K-533 93	Jung, Satbyoul	PBL-B1-512 78	Kawanami, Tsuyoshi	OPT-F-525 8		
Imae, Tomohiko	NMS-C2-214 44	Jegla, Zdenek	EES-K-111 39	Kabelac, Stephan	TPP-I-223 53	Kawasaki, Hiroki	FCV-F-234 4		
Imai, Keita	HTE-C2-411 70	Jelle, Bjørn Petter	EEF-K-231 56	Kabelac, Stephan	NMT-F-532 85	Kawashima, Daisuke	MIN-C1-236 4		
Inam, Mohammad Ilias	NSM-H-322 63	Jelle, Bjørn Petter	NMM-G-534 87	Kabov, Oleg	EVP-B1-115 29	Kazari, Masahide	HTE-C2-513 8		

Kearney, Daniel	TMG-K-515 92	Kirkpatrick, Michael	NCV-F-515 84	Kono, Takahiro	RAD-J-425 76	Labergue, Alexandre	EVP-B1-123 29
Keinath, Brendon L.	CDS-J-112 38	Kishimoto, Masashi	FCL-H-125 36	Kornev, Nikolai	HTE-C2-522 83	Labergue, Alexandre	MIN-C1-225 43
Kempers, Roger	HPP-K-411 77	Kishimoto, Masashi	PMD-I-511 89	Kornfeld, Bernard J.	NSM-H-311 63	Lacroix, David	NMM-G-533 87
Kenig, Eugeny Y.	HEX-G-214 49	Kita, Shota	PBL-B1-515 78	Kortsenshteyn, Naum	CDS-J-224 54	Lacroix, David	NMM-G-535 87
Kenjereš, Sasa	HTE-C2-234 45	Kitagawa, Yoshihiko	TPF-B2-312 58	Koşar, Ali	FCV-F-235 49	Lai, Chi-ming	HTE-C2-521 83
Kenjereš, Saša	CNV-C1-531 82	Kitamura, Nobuki	FCL-H-123 36	Kosevich, Yuriy	NMM-G-425 73	Lam, Lisa	FCV-F-222 48
Kennof, Gerben	PMD-I-324 64	Kitano, Tomoaki	CMB-J-523 91	Koshiji, Taichi	CDS-J-225 54	Lamien, Bernard	BMA-E-114 33
Kerschen, Gaetan	RAD-J-423 76	Kiyota, Yusuke	MIN-C1-222 43	Kotze, Nicola M.	CNV-C1-524 81	Lamige, Sylvain	CMB-J-532 91
Keshmiri, Amir	TTR-C2-114 32	Kiyota, Yusuke	MIN-C1-223 43	Koyama, Kohei	TPF-B2-313 58	Lamperth, Michael	ECS-K-214 55
Kessal, Mohand	PBL-B1-424 67	Klein, Peter	SOL-B2-213 41	Koyama, Shigeru	EEC-H-231 52	Lan, Shuiquan	NMM-G-525 86
Khodakov, Konstantin	PBL-B1-411 67	Klocke, Fritz	MNF-E-124 33	Koyano, Takehiro	ADS-D-213 46	Lan, Zhong	CDS-J-222 54
Khramtsov, Dmitry	TPN-B2-425 68	Kneer, Reinhold	MNF-E-124 33	Kozak, Yoram	HEX-G-221 50	Laneryd, Tor	EES-K-124 39
Kikugawa, Gota	NMM-G-521 86	Kneer, Reinhold	MIN-C1-233 44	Krainova, Irina	RAD-J-421 76	Lapene, Alexandre	PMD-I-523 89
Kikusato, Akira	CMB-J-531 91	Kneer, Reinhold	TPP-I-226 53	Kraneborg, Jurjen	EES-K-124 39	Lau, Ghar Ek	HTE-C2-232 45
Kilkovsky, Bohuslav	EES-K-111 39	Kneer, Reinhold	FCV-F-311 61	Krasovitov, Boris	TPM-B2-531 80	Lau, Wei L.	NSM-H-311 63
Kim, Beomjoon	TPP-I-214 52	Kneer, Reinhold	TDY-C1-415 69	Krishnan, Swaminathan G.	PMD-I-411 75	Launay, Stéphane	EES-K-121 39
Kim, Hyun Jin	RNE-C1-326 59	Kneer, Reinhold	CND-H-511 87	Kristiawan, Magdalena	TTR-C2-125 32	Launay, Stéphane	CDS-J-231 55
Kim, Hyungdae	PBL-B1-512 78	Knikker, Ronnie	CNV-C1-525 81	Kruger, Sunita	EES-K-113 39	Launder, Brian	HEX-G-233 50
Kim, Hyunho	ADS-D-211 46	Knupp, Diego C.	NSM-H-323 63	Kuang, Youdi	TPP-I-225 53	Lavieille, Pascal	PBL-B1-423 67
Kim, HyunSoo	CDS-J-233 55	Ko, Dong Guk	BMA-E-111 33	Kubo, Keisuke	NMM-G-532 87	Lavrikov, Aleksandr	FBL-B1-313 57
Kim, Jeongkeun	HEX-G-232 50	Kobayashi, Kenichi	TTR-C2-116 32	Kühni, Manuel	CMB-J-532 91	Lavrikov, Alexander	PBL-B1-514 78
Kim, Jungho	EVP-B1-114 29	Kobayashi, Shunsuke	ECS-K-211 55	Kuk, Keon	ACR-G-321 62	Le Maoult, Yannick	MIN-C1-221 43
Kim, Jungho	FBL-B1-314 57	Kobayashi, Takashi	EEC-H-222 51	Kumar, Prashant	PMD-I-325 64	Le Niliot, Christophe	PLS-K-316 66
Kim, Kwang-Yong	EEC-H-224 51	Kodama, Shigeo	NCV-F-421 72	Kumar, Ravi	HTE-C2-531 83	Le Quere, Patrick	NCV-F-513 84
Kim, Kyu Han	RNE-C1-326 59	Koehler, Timothy P.	TMG-K-522 92	Kunugi, Tomoaki	PBL-B1-323 57	Leal, Laetitia	PBL-B1-423 67
Kim, Min Soo	ACR-G-321 62	Kohno, Masamichi	EVP-B1-114 29	Kunugi, Tomoaki	PBL-B1-512 78	Leão, Hugo L. S. L.	FBL-B1-236 41
Kim, Moohwan	HTE-C2-314 60	Kohno, Masamichi	NMM-G-532 87	Kurata, Kosaku	BMA-E-222 47	Lecki, Marcin	CPM-E-412 71
Kim, Ook Joong	TPP-I-125 37	Koito, Yasushi	TMG-K-524 92	Kurimoto, Ryo	TBF-D-221 46	Lecompte, Steven	RNE-C1-325 59
Kim, Seong Jung	IPJ-C1-311 59	Koizumi, Yasuo	PBL-B1-412 67	Kuroda, Koji	MLT-H-112 36	Lee, Ann	HTE-C2-232 45
Kim, Sung Jin	TPA-B2-112 30	Kolenda, Zygmunt	CND-H-415 74	Kurose, Ryoichi	CMB-J-523 91	Lee, Ann	HTE-C2-324 60
Kim, Sun-Min	EEC-H-224 51	Komatsu, Yosuke	CND-H-415 74	Kusaba, Akira	CDS-J-223 54	Lee, Bong Jae	TPP-I-211 52
Kim, Taeho	HTE-C2-314 60	Komiya, Atsuki	BMA-E-112 33	Kusaka, Hideyuki	HPP-K-423 77	Lee, Dae Hee	IPJ-C1-311 59
Kim, Tae-Ho	EES-K-125 39	Komiya, Atsuki	RAD-J-325 65	Kusaka, Jin	CMB-J-531 91	Lee, Dong II	SOL-B2-215 41
Kim, Taehoon	EVP-B1-112 29	Komoda, Yoshiyuki	FCV-F-214 48	Kusterer, Karsten	HTE-C2-513 82	Lee, Hee Won	CND-H-523 88
Kim, Tongbeum	TDY-C1-423 69	Komoda, Yoshiyuki	HEX-G-236 50	Kuwata, Yusuke	TTR-C2-126 32	Lee, Jae Young	PBL-B1-525 78
Kim, Won-Seok	CDS-J-233 55	Komori, Satoru	CMB-J-523 91	Kuzenov, Victor V.	CPM-E-425 71	Lee, Jang Hyun	TPN-B2-412 68
Kim, Yeong Hwan	IPJ-C1-311 59	Komossa, Hendrik	MFP-G-311 62	Kuzma-Kichta, Yuri	FBL-B1-313 57	Lee, Jong-Wook	CDS-J-233 55
Kim, Yong Woo	SOL-B2-212 41	Komov, A.T.	TPB-B2-124 30	Kuzma-Kichta, Yury	PBL-B1-514 78	Lee, Jungho	EVP-B1-112 29
Kim, Yoon Jo	TPN-B2-412 68	Komov, Alexander	HTE-C2-225 45	Kuznetsov, Denis	EVP-B1-212 40	Lee, Jungseok	TPA-B2-112 30
Kim, Young Hyung	SOL-B2-212 41	Kondo, Fumiya	ECS-K-213 55	Kuznetsov, Genii	EVP-B1-115 29	Lee, Namkyu	HTE-C2-412 70
Kimijima, Shinji	CND-H-415 74	Kondo, Katsuya	MIN-C1-234 44	Kuznetsov, Vladimir V.	FBL-B1-231 41	Lee, Seung-Hyun	RNE-C1-326 59
Kimura, Yu	TTR-C2-116 32	Kondo, Katsuya	MIN-C1-236 44	Kuznik, Frédéric	NSM-H-321 63	Lee, Suvit	HTE-C2-533 83
Kind, Matthias	PMD-I-311 64	Kondo, Yoshiyuki	TPF-B2-324 58	Kwon, Jingyu	HTE-C2-314 60	Lee, Szu-Hung	EES-K-126 39
Kinoshita, Shinichi	RAD-J-412 76	Kong, Xin	PBL-B1-516 78	La Cava, Emma	EES-K-116 39	Lee, Wonchul	EVP-B1-216 40

Lee, Wooram	PBL-B1-525 78	Li, Ri	CND-H-516 87	Lin, Wenxian	NSM-H-322 63	Liu, Zhenyu	EVP-B1-126 29
Lehmacher, Axel	HEX-G-235 50	Li, Shiou-Jiuan	GTB-G-416 73	Lin, Wenxian	NCV-F-515 84	Liu, Zhi	PMD-I-413 75
Lei, Chengwang	NCV-F-411 72	Li, Tao	TPM-B2-532 80	Lin, Xipeng	PBL-B1-425 67	Liu, Zhichun	HTE-C2-414 70
Lei, Guilin	TBF-D-226 46	Li, Wei	TPP-I-113 37	Lin, Yueh-Hung	FBL-B1-222 40	Liu, Zhichun	PMD-I-525 89
Lei, Shenghui	ECS-K-212 55	Li, Wei	TBF-D-225 46	Lin, Yur-Tsai	HEX-G-122 35	Liu, Zhigang	NMM-G-515 86
Lei, Shijun	CND-H-425 74	Li, Wenhao	PMD-I-321 64	Ling, Jiazhen	EES-K-114 39	Liu, Zhongliang	PBL-B1-536 79
Lei, Yuan	EEC-H-212 51	Li, Wenhao	HTE-C2-413 70	Lipinski, Tom	EES-K-126 39	Liu, Zhuowei	CND-H-425 74
Lei, Yuan	TMG-K-534 93	Li, Xiansen	ADS-D-211 46	Lipinski, Wojciech	SOL-B2-231 42	Liu, Zuodong	NMT-F-534 85
Leiroz, Albino	RNE-C1-324 59	Li, Xiaowei	PMD-I-512 89	Lipinski, Wojciech	PMD-I-314 64	Lloyd, Derrick	HTE-C2-416 70
Lemoine, Fabrice	EVP-B1-123 29	Li, Xuefang	PBL-B1-425 67	Lipinski, Wojciech	RAD-J-316 65	Lo Jacono, David	HTE-C2-424 70
Lemoine, Fabrice	MIN-C1-225 43	Li, Xuefang	CPM-E-415 71	Lipstein, Itay	HTE-C2-524 83	Lomberg, Marina	FCL-H-125 36
Lenert, Andrej	SOL-B2-223 42	Li, Xueyuan	TPN-B2-413 68	Liu, Bin	NSM-H-325 63	Longo, Giovanni A.	CDS-J-214 54
Lenkov, Viktor	PBL-B1-514 78	Li, Xunfeng	TPN-B2-423 68	Liu, Bin	PMD-I-422 75	Lopes, Silvania	PLS-K-314 66
Leong, Kai Choong	PBL-B1-535 79	Li, Yafei	PLS-K-312 66	Liu, Bin	HTE-C2-535 83	Lopez-Belchí, Alejandro	TPB-B2-125 30
Leonov, Victor	SOL-B2-214 41	Li, Yan	PLS-K-312 66	Liu, Chaopeng	ACR-G-323 62	Lopez-Belchi, Alejandro	TPM-B2-521 80
Leont'ev, Alexander I.	TDY-C1-422 69	Li, Yang	TPP-I-115 37	Liu, Cheng-Sheng	CDS-J-212 54	Lu, Chi	TEL-K-326 66
Leontiev, Alexander I.	HTE-C2-522 83	Li, Yanzhe	TEL-K-326 66	Liu, Chunlin	EEC-H-213 51	Lu, Jianfeng	TPP-I-212 52
Leontyev, Aleksandr	FBL-B1-313 57	Li, Yao	NMT-F-533 85	Liu, Cong	TDY-C1-513 81	Lu, Jianfeng	PBL-B1-521 78
Levy, Avi	TPM-B2-523 80	Li, Yiqin	NCV-F-516 84	Liu, Di	PMD-I-315 64	Lu, Mei	TPS-B2-513 79
Li, Bing-xi	HTE-C2-312 60	Li, Yuanyang	TPS-B2-515 79	Liu, Di	PMD-I-532 90	Lu, Shu-Shen	CND-H-512 87
Li, Dan-Yang	PBL-B1-531 79	Li, Yuanyuan	TST-I-236 53	Liu, Fang	CPM-E-423 71	Lu, Tian Jian	TDY-C1-423 69
Li, Deying	TMG-K-513 92	Li, Zengyao	CPM-E-411 71	Liu, Fang	PMD-I-413 75	Lu, Zhengmao	FLM-H-534 88
Li, Dong	PPE-G-113 35	Li, Zeng-Yao	SOL-B2-232 42	Liu, Hongzhi	TST-I-232 53	Luan, Hui-bao	HEX-G-121 35
Li, Dong	BMA-E-221 47	Li, Zhen	EEF-K-224 56	Liu, Ji-Ping	TPM-B2-532 80	Lukashov, Vladimir	CMB-J-522 91
Li, Gen	HPP-K-424 77	Li, Zhen	OPT-F-523 85	Liu, Jun	PLS-K-313 66	Luo, Feng	TMG-K-512 92
Li, Gen	HTE-C2-532 83	Li, ZhiGang	FCV-F-221 48	Liu, Linhua	RAD-J-315 65	Luo, Kang	FCV-F-326 61
Li, Guang-Cheng	FBL-B1-222 40	Li, Zhixin	HTE-C2-222 45	Liu, Linhua	RAD-J-324 65	Luo, Kang	MCV-D-515 84
Li, Hongqi	EEF-K-232 56	Li, Zhixin	OPT-F-523 85	Liu, Meng	MIN-C1-214 43	Luo, Lincong	TBF-D-225 46
Li, Jiang	ADS-D-216 46	Liang, Fei	BMA-E-115 33	Liu, Naian	FCV-C1-115 31	Luo, Lingai	TMG-K-511 92
Li, Jia-Qi	PBL-B1-531 79	Liang, J. G.	NMM-G-512 86	Liu, Naian	CMB-J-533 91	Luo, Xiaobing	MFP-G-313 62
Li, Jie	RAD-J-426 76	Liang, Jiangtao	EEF-K-221 56	Liu, Ni	SAT-J-512 90	Luo, Xiaobing	OPT-F-521 85
Li, Lan	MFP-G-313 62	Liang, Kunfeng	CDS-J-221 54	Liu, Qiusheng	HTE-C2-516 82	Luo, Yafei	MIN-C1-216 43
Li, Lan	OPT-F-521 85	Liang, Xingang	HTE-C2-511 82	Liu, Qixin	NMM-G-522 86	Lyons, Kevin M.	CMB-J-532 91
Li, Lei	HTE-C2-321 60	Liang, Yuming	EES-K-115 39	Liu, Shanwei	TMG-K-513 92	Ma, Chongfang	TMG-K-513 92
Li, Lei	NSM-H-315 63	Liao, Qiang	FLM-H-535 88	Liu, Shixian	PMD-I-512 89	Ma, Chong-Fang	NSM-H-325 63
Li, Ling	TPS-B2-513 79	Liberzon, Alex	MIN-C1-224 43	Liu, Wei	MIN-C1-232 44	Ma, Hongbin	HPP-K-424 77
Li, Ming	TST-I-235 53	Lienhard V, John	EEF-K-234 56	Liu, Wei	HTE-C2-414 70	Ma, Hongbin	HPP-K-425 77
Li, Ming-Jia	SOL-B2-224 42	Lienhard V, John H.	MTR-F-123 34	Liu, Wei	PMD-I-525 89	Ma, Hongbin	HTE-C2-532 83
Li, Perry	PMD-I-533 90	Lienhard V, John H.	TBF-D-224 46	Liu, Weiguo	TPP-I-114 37	Ma, Jia	TDY-C1-425 69
Li, Qiang	PBL-B1-513 78	Ligrani, Phillip	IPJ-C1-311 59	Liu, Xiaohua	MTR-F-112 34	Ma, Lianxiang	TPP-I-113 37
Li, Qiang	NMT-F-531 85	Lim, Sengchuan	GTB-G-414 73	Liu, Yu	TPP-I-114 37	Ma, Ting	HTE-C2-321 60
Li, Qianshan	TEL-K-325 66	Lin, Gang	HTE-C2-513 82	Liu, Yu	TPP-I-213 52	Ma, Weigang	NMM-G-532 87
Li, Qin-yi	TPP-I-123 37	Lin, Tsing-Fa	FBL-B1-223 40	Liu, Yu	PMD-I-326 64	Ma, Xuehu	CDS-J-222 54
Li, Qiyuan	SOL-B2-216 41	Lin, Wamei	HEX-G-211 49	Liu, Zhenhua	TPS-B2-515 79	Ma, Yong	TPP-I-124 37

Ma, Yong	NMM-G-512 86	McKay, Ian	ADS-D-211 46	Minko, Konstantin	CDS-J-114 38	Mukasa, Shinobu	PLS-K-315 66
Macêdo, Emanuel	FCV-C1-113 31	Mehendale, Sunil	FBL-B1-224 40	Miscevic, Marc	PBL-B1-423 67	Mulock Houwer, Franscois	CNV-C1-524 81
MacLachlan, Scott	FCV-F-222 48	Mehrabi, Mehdi	FCV-F-324 61	Mishima, Fumiya	TPF-B2-313 58	Mun, Ilju	ACR-G-321 62
Maes, Julien	PMD-I-523 89	Ménézo, Christophe	MIN-C1-226 43	Mishra, Subhash	CND-H-422 74	Murakami, Mutsuaki	MNF-E-123 33
Maggioni, Federica Lidia Teresa	EEC-H-234 52	Ménézo, Christophe	HTE-C2-422 70	Mitrovic, Jovan	PBL-B1-533 79	Murakami, Sho	MLT-H-111 36
Mahdavi, Mostafa	NSM-H-314 63	Ménézo, Christophe	NCV-F-516 84	Mitsutake, Yuichi	MIN-C1-212 43	Murakami, Takuru	PPE-G-114 35
Mahmood, Gazi	GTB-G-415 73	Meng, Ji'an	HTE-C2-222 45	Miura, Kensuke	TTR-C2-113 32	Murakami, Yoichi	MLT-H-113 36
Mahmood, Gazi	CNV-C1-522 81	Meng, Jiandong	MFP-G-315 62	Miyara, Akio	HEX-G-125 35	Murakawa, Hideki	FCL-H-123 36
Maillet, D.	INV-E-216 47	Meng, Qiang	TMG-K-513 92	Miyara, Akio	CDS-J-211 54	Muramatsu, Kenshiro	TBF-D-222 46
Makarov, Maksim	FCV-F-213 48	Mensah, Patrick	FCV-F-323 61	Miyawaki, Kosuke	PMD-I-426 75	Murata, Akira	GTB-G-412 73
Malloy, Adam	ECS-K-214 55	Merabia, Samy	NMM-G-533 87	Miyazaki, Koji	TEL-K-323 66	Murata, Akira	HPP-K-426 77
Mameli, Mauro	TPA-B2-111 30	Meslem, Amina	TTR-C2-125 32	Miyoshi, Koji	MIN-C1-211 43	Murray, Darina	TPF-B2-314 58
Manca, Oronzio	MCV-D-513 84	Meslem, Amina	NSM-H-326 63	Miyoshi, Kota	PMD-I-511 89	Murray, Darina	SAT-J-515 90
Manchanda, Parth	TPN-B2-424 68	Metcalfe, Guy	HTE-C2-525 83	Mizutani, Masaki	CDS-J-126 38	Murray, Darina B.	HTE-C2-523 83
Mancin, Simone	FBL-B1-235 41	Meyer, Josua P.	FCV-C1-111 31	Mo, Dong-Chuan	CND-H-512 87	Mutailipu, Meiheriayi	PMD-I-326 64
Manning, Jonathan	TPF-B2-323 58	Meyer, Josua P.	HEX-G-126 35	Mo, Songping	CND-H-425 74	Mwesigye, Aggrey	SOL-B2-235 42
Manzoni, Miriam	TPA-B2-111 30	Meyer, Josua P.	CDS-J-116 38	Mochizuki, Masataka	FCL-H-126 36	Næss, Erling	HTE-C2-315 60
Marchuk, Igor	EVP-B1-116 29	Meyer, Josua P.	CDS-J-121 38	Mochizuki, Masataka	HPP-K-412 77	Næss, Erling	HTE-C2-323 60
Marengo, Marco	TPA-B2-111 30	Meyer, Josua P.	SOL-B2-235 42	Mochizuki, Masataka	HPP-K-414 77	Nafsun, Aainaa Izyan	MFP-G-311 62
Marengo, Marco	TPM-B2-533 80	Meyer, Josua P.	MIN-C1-231 44	Mochizuki, Masataka	TMG-K-514 92	Nagai, Niro	EVP-B1-125 29
Marengo, Marco	NMT-F-535 85	Meyer, Josua P.	FCV-F-212 48	Mochizuki, Sadanari	HPP-K-412 77	Nagai, Niro	HPP-K-422 77
Marengo, Marco	NMT-F-536 85	Meyer, Josua P.	FCV-F-215 48	Moiseev, Mikhail	EVP-B1-212 40	Nagano, Hosei	MNF-E-122 33
Marinelli, Lorenzo	MCV-D-513 84	Meyer, Josua P.	FCV-F-216 48	Moita, Ana	PBL-B1-534 79	Nagano, Katsunori	TST-I-232 53
Marsh, Charles	TPM-B2-522 80	Meyer, Josua P.	TPP-I-221 53	Mojiri, Ahmad	SOL-B2-221 42	Nagano, Yasutaka	TTR-C2-112 32
Marta, Romano	TPA-B2-113 30	Meyer, Josua P.	TPP-I-222 53	Momoki, Satoru	TPF-B2-321 58	Nagare, Yutaka	BMA-E-222 47
Martinez-Botas, Ricardo	ECS-K-214 55	Meyer, Josua P.	RNE-C1-322 59	Monde, Masanori	MIN-C1-212 43	Nagasaka, Wataru	HTE-C2-223 45
Maruyama, Shigenao	BMA-E-112 33	Meyer, Josua P.	FCV-F-324 61	Monde, Masanori	MCV-D-511 84	Nagase, Fumihisa	MIN-C1-232 44
Maruyama, Shigenao	RAD-J-325 65	Meyer, Josua P.	NSM-H-314 63	Montagné, Brice	TTR-C2-125 32	Nagata, Harunori	RAD-J-321 65
Maruyama, Shigeo	NMM-G-421 73	Meyer, Josua P.	CND-H-414 74	Moreira, Antonio	PBL-B1-534 79	Nagata, Kouji	TTR-C2-113 32
Maruyama, Shigeo	NMM-G-424 73	Meyer, Josua P.	CNV-C1-522 81	Moreira, Debora	TPP-I-112 37	Nagatake, Taku	MIN-C1-232 44
Masset, Luc	RAD-J-423 76	Meyer, Josua P.	CNV-C1-524 81	Mori, Ena	GTB-G-412 73	Nagayama, Gyoko	CDS-J-126 38
Matar, Omar	TPN-B2-424 68	Meyer, Josua P.	HTE-C2-534 83	Mori, Hideo	ADS-D-215 46	Nakabe, Kazuyoshi	HTE-C2-223 45
Matsuda, Yu	FBL-B1-221 40	Michii, Kizuku	NCV-F-421 72	Mori, Hideo	FBL-B1-311 57	Nakagaki, Takao	PMD-I-424 75
Matsumoto, Mitsuhiro	NMM-G-523 86	Miguel, Alberto	CNV-C1-532 82	Mori, Hideo	RAD-J-426 76	Nakagawa, Masafumi	TPA-B2-115 30
Matsumoto, Naoko	TMG-K-524 92	Mikhailovich, Boris	TPM-B2-523 80	Mori, Shoji	HPP-K-415 77	Nakagawa, Naoki	ADS-D-213 46
Matsumoto, Ryosuke	HEX-G-215 49	Milanez, Luiz Fernando	CND-H-412 74	Morimatsu, Yuki	FCL-H-126 36	Nakagawa, Shinji	MIN-C1-216 43
Matsumoto, Sohei	NMS-C2-211 44	Milani, Davide	CDS-J-215 54	Morimoto, Kenichi	OPT-F-522 85	Nakagawa, Shinji	EEC-H-211 51
Matsumoto, Wataru	PMD-I-511 89	Miljkovic, Nenad	CDS-J-232 55	Morini, Gian Luca	FCV-F-224 48	Nakahara, Daisuke	MNF-E-121 33
Matsumura, Yukihiko	MNF-E-121 33	Miljkovic, Nenad	CDS-J-236 55	Morokuma, Takayuki	FLM-H-532 88	Nakahara, Masaya	CMB-J-521 91
Matsuo, Takuya	HTE-C2-223 45	Milkie, Jeffrey A.	CDS-J-112 38	Morrison, Karl	SOL-B2-211 41	Nakaharai, Hiroyuki	EES-K-122 39
Matsuyama, Ken	FCV-C1-124 31	Min, Hao	TPP-I-213 52	Mostaghimi, Javad	MTR-F-111 34	Nakaharai, Hiroyuki	CNV-C1-523 81
Matuszewski, Lionel	CMB-J-535 91	Min, Qi	PMD-I-512 89	Mostaghimi, Javad	FCV-F-232 49	Nakajima, Shota	TTR-C2-116 32
Maurente, André J.	BMA-E-114 33	Ming, Pingjian	CND-H-525 88	Motegi, Kosuke	FCV-F-234 49	Nakajima, Tadashi	MLT-H-112 36
Mawatari, Takashi	FBL-B1-311 57	Ming, Tingzhen	NSM-H-312 63	Muggeridge, Ann	PMD-I-523 89	Nakamata, Chiyuki	GTB-G-411 73

Nakamura, Akira	MIN-C1-211 43	Nieckele, Angela	TPM-B2-524 80	Ohtake, Hiroyasu	PBL-B1-522 78	Pabiou, Hervé	NCV-F-516 84
Nakamura, Hajime	FCV-C1-121 31	Niezgoda, Mathieu	MIN-C1-235 44	Okabe, Takahiro	BMA-E-112 33	Padilla, Jorge	EVP-B1-124 29
Nakamura, Hajime	CND-H-521 88	Niimi, Tomohide	FBL-B1-221 40	Okada, Takuya	RNE-C1-323 59	Pakhomov, Maksim	TPS-B2-514 79
Nakamura, Makoto	TST-I-232 53	Nikaido, Hitoshi	EVP-B1-125 29	Okafor, Izuchukwu Francis	FCV-C1-111 31	Palchekovskaya, Natalia	FCV-C1-114 31
Nakamura, Shota	IPJ-C1-313 59	Niki, Yuta	EEC-H-222 51	Okajima, Junnosuke	BMA-E-112 33	Palchekovskaya, Natalia	TDY-C1-511 81
Nakano, Ryota	PMD-I-513 89	Niro, Alfonso	HTE-C2-322 60	Okajima, Junnosuke	RAD-J-325 65	Pandit, Jaideep	HTE-C2-421 70
Nakano, Yuta	FCL-H-126 36	Nishi, Koji	EEC-H-211 51	Okazaki, Ken	RNE-C1-323 59	Panella, Bruno	CDS-J-215 54
Nakaso, Koichi	ECS-K-211 55	Nishida, Atsushi	TTR-C2-124 32	Okazaki, Ken	PMD-I-513 89	Panigrahy, Snehasish	CND-H-422 74
Nakayama, Akira	PMD-I-321 64	Nishida, Felipe Baptista	EEC-H-221 51	Okazaki, Ken	CMB-J-524 91	Pansang, Rattanakorn	IPJ-C1-314 59
Nakayama, Akira	HTE-C2-413 70	Nishida, Robert	FCL-H-124 36	Okinaga, Seiji	FCV-C1-124 31	Park, Hanvit	HTE-C2-326 60
Nakayama, Akira	PMD-I-421 75	Nishida, Shogo	MLT-H-112 36	Okino, Shinya	IPJ-C1-313 59	Park, Hyun Jin	IPJ-C1-311 59
Nam, Youngsuk	EVP-B1-216 40	Nishimura, Satoshi	RAD-J-412 76	Okitsu, Taku	FCV-F-312 61	Park, Hyunsun	HTE-C2-314 60
Narasimhan, Arunn	BMA-E-113 33	Nishio, Jun	CMB-J-523 91	Okosun, Anfani	EEF-K-223 56	Park, II Seouk	CND-H-523 88
Narayanan, Shankar	ADS-D-211 46	Nishiyama, Takashi	CDS-J-223 54	Okumura, Yukihiko	RNE-C1-323 59	Park, Jang Min	TPP-I-125 37
Narayanan, Shankar	FLM-H-534 88	Nithin	INV-E-211 47	Okuno, Eiichi	TDY-C1-411 69	Park, Jang-Min	EVP-B1-112 29
Narayanan, Vinod	CDS-J-115 38	Niu, Zhiqiang	TEL-K-325 66	Okutucu-Özyurt, Tuba	TPM-B2-526 80	Park, Sang Hee	SOL-B2-212 41
Narayanan, Vinod	EVP-B1-213 40	Noda, Atsuto	PMD-I-531 90	Okuyama, Kunito	HPP-K-415 77	Park, Sang Jin	TPP-I-125 37
Narayanaswamy, Ramesh	EVP-B1-213 40	Noh, Jae-Man	CPM-E-424 71	Oliveira, Antonio	CPM-E-414 71	Park, Yong-Jun	RNE-C1-326 59
Narcy, Marine	FBL-B1-314 57	Nomura, Shinfuku	PLS-K-315 66	Oliveira, Ricardo	CNV-C1-532 82	Pattamatta, Arvind	TPB-B2-123 30
Nardini, Sergio	MCV-D-513 84	Noto, Kensuke	TTR-C2-121 32	Onishi, Hajime	CNV-C1-521 81	Pattamatta, Arvind	PMD-I-412 75
Nasim Hasan, Mohammad	MIN-C1-212 43	Nunes, Luiz Carlos	TPP-I-112 37	Onishi, Hiroki	EVP-B1-125 29	Pattanotai, Teeranai	PMD-I-513 89
Nastase, Ilinca	TTR-C2-125 32	Nuntadusit, Chayut	IPJ-C1-314 59	Onishi, Shunsuke	PBL-B1-515 78	Patterson, John	NCV-F-411 72
Nastase, Ilinca	NSM-H-326 63	Obadina, Sarah	HEX-G-124 35	Ono, Kenji	BMA-E-223 47	Paul, Anup	BMA-E-113 33
Natesh, Shashank	CDS-J-115 38	Obrecht, Christian	NSM-H-321 63	Ono, Naoki	NMS-C2-211 44	Pavithran, S.	MCV-D-514 84
Naumkin, Viktor	FCV-F-213 48	Oda, Manabu	CNV-C1-523 81	Onuma, Eiji	FCV-C1-124 31	Pavlenko, Aleksandr	EVP-B1-212 40
Navarro-Peris, Emilio	CDS-J-235 55	Oda, Yutaka	TTR-C2-122 32	Oosterhuis, Joris	PMD-I-515 89	Pavlenko, Aleksandr	EVP-B1-215 40
Naveira-Cotta, Carolina Palma	NSM-H-323 63	O'Donovan, Tadhg S	SOL-B2-222 42	Oosthuizen, Patrick H.	FCV-C1-122 31	Pedrazzi, Simone	EES-K-116 39
Naveira-Cotta, Carolina Palma	PMD-I-522 89	O'Donovan, Tadhg S	SOL-B2-225 42	Oosthuizen, Patrick H.	NCV-F-424 72	Peles, Yoav	CDS-J-123 38
Naylor, David	NCV-F-422 72	Oga, Yosuke	MNF-E-121 33	Oprins, Herman	EEC-H-234 52	Pellé, Julien	HTE-C2-221 45
Nedea, Silvia	TDY-C1-412 69	Ogawa, Kuniyasu	MIN-C1-215 43	Ordonez-Miranda, Jose	TPP-I-214 52	Peng, Benli	CDS-J-222 54
Nefzaoui, Elyes	TMG-K-532 93	Ogushi, Tetsuro	EEC-H-222 51	O'Reilly Meehan, Rudi	TPF-B2-314 58	Peng, Peng	MTR-F-121 34
Nekrasov, Dmitry	TPN-B2-425 68	Oh, Dong-Wook	EVP-B1-112 29	Orlande, Helcio R. B.	BMA-E-114 33	Pepper, Darrell W.	CPM-E-413 71
Nenarokomov, Aleksey	INV-E-213 47	Oh, Dong-Wook	TPP-I-125 37	Orlande, Helcio R. B.	INV-E-214 47	Pereira, Luiz M.	FCV-C1-113 31
Nenarokomov, Aleksey	RAD-J-421 76	Oh, Jong-Taek	FBL-B1-233 41	Orlandi, Michele	EES-K-116 39	Persoons, Tim	TPF-B2-314 58
Netelev, Andrey	INV-E-213 47	Ohadi, Michael	HEX-G-124 35	Osakabe, Masahiro	TPF-B2-312 58	Persoons, Tim	HTE-C2-523 83
Ng, Wa San	NMM-G-511 86	Ohara, Taku	MLT-H-111 36	Osawa, Tomohiro	PBL-B1-511 78	Persoons, Tim	SAT-J-515 90
Ngo, Lloyd C.	RNE-C1-322 59	Ohara, Taku	NMM-G-521 86	Ose, Yasuo	PBL-B1-323 57	Phan, Thanh-Long	HPP-K-412 77
Nguyen, Nam Trung	TBF-D-223 46	Ohashi, Akio	ACR-G-322 62	Ose, Yasuo	PBL-B1-512 78	Pharoah, Jon	FCL-H-124 36
Nguyen, Thang	HPP-K-412 77	Ohashi, Masakazu	FCL-H-126 36	Otanicar, Todd	EES-K-123 39	Phelan, Bernadette	EES-K-123 39
Nguyen, Thang	HPP-K-414 77	Ohashi, Masakazu	TMG-K-514 92	Otsuka, Keigo	NMM-G-424 73	Phelan, Patrick	EES-K-123 39
Nguyen, Thang	TMG-K-514 92	Ohliger, Andreas	TPP-I-226 53	Ouchi, Takafumi	ADS-D-215 46	Pignon, Baptiste	MIN-C1-213 43
Nguyen, Thien Duy	HTE-C2-221 45	Ohliger, Andreas	TDY-C1-415 69	Ouyang, Xiao-Long	CND-H-423 74	Piper, Mark	HEX-G-214 49
Nguyen, Tien	TMG-K-514 92	Ohshima, Tsubasa	CDS-J-213 54	Ozawa, Mamoru	TPF-B2-322 58	Pirmez, Pieter	PMD-I-324 64
Nian, Yong-Le	TPP-I-111 37	Ohta, Haruhiko	PBL-B1-515 78	Pabiou, Hervé	MIN-C1-226 43	Planquart, Ph.	CND-H-513 87

Pleskacz, Łukasz	HTE-C2-234 45	Reddy, B. V. Krishna	TEL-K-324 66	Rozenfeld, Tomer	HEX-G-221 50	Sasaki, Soichi	TPF-B2-321 58
Pokusaev, Boris	TPN-B2-425 68	Redecker, Christoph	TDY-C1-424 69	Ruan, Liming	INV-E-215 47	Satake, Shin-ichi	MNF-E-125 33
Pokusaev, Boris	TDY-C1-413 69	Reich, Leanne	PMD-I-314 64	Ruan, Li-ming	RAD-J-424 76	Satake, Shin-ichi	TEL-K-322 66
Popovich, Sergey	FCV-C1-125 31	Reizes, John A.	NSM-H-311 63	Rufer, Alfred	EEF-K-222 56	Sathyanarayana, Aravind	PBL-B1-321 57
Pranoto, Indro	PBL-B1-535 79	Reizes, John A.	NCV-F-512 84	Ruiz-Trejo, Enrique	FCL-H-125 36	Sato, Daiki	PMD-I-425 75
Prasher, Ravi	EES-K-123 39	Rémy, B.	INV-E-216 47	Rusaouën, Gilles	NSM-H-321 63	Satoh, Isao	MFP-G-312 62
Prat, Marc	PBL-B1-413 67	Remy, Benjamin	MIN-C1-235 44	Ruyer, Pierre	EVP-B1-211 40	Satoh, Koyu	FCV-C1-115 31
Preston, Daniel J.	CDS-J-232 55	Ren, Ya-tao	RAD-J-424 76	Ryu, Seunggeol	EVP-B1-216 40	Satoh, Koyu	CMB-J-533 91
Preston, Daniel J.	CDS-J-236 55	Renard, M.	CND-H-513 87	Ryzhkov, Sergei V.	CPM-E-425 71	Sayer, Robert A.	TMG-K-522 92
Pretorius, Leon	EES-K-113 39	Reviznikov, Dmitry	RAD-J-312 65	Saccone, Giacomo	TBF-D-221 46	Sazhin, Sergei	TPS-B2-511 79
Prinsloo, Francois P.A	FCV-F-212 48	Ribatski, Gherhardt	FBL-B1-236 41	Sack, Jean	CDS-J-236 55	Sazhin, Sergei S.	EVP-B1-122 29
Proulx, Pierre	PLS-K-314 66	Richardt, Carsten	HTE-C2-325 60	Sadr, Reza	HTE-C2-423 70	Scammell, Alexander	FBL-B1-314 57
Puls, Hendrik	MNF-E-124 33	Rietz, Manuel	MIN-C1-233 44	Saiki, Takahito	PBL-B1-511 78	Schabel, Wilhelm	MTR-F-114 34
Punch, Jeff	TMG-K-526 92	Righetti, Giulia	CDS-J-214 54	Saito, Hiroshi	HPP-K-426 77	Scharfer, Philip	MTR-F-114 34
Punch, Jeff	TMG-K-533 93	Rigollet, Fabrice	PLS-K-316 66	Saito, Motohiro	PMD-I-426 75	Scherer, Viktor	MFP-G-311 62
Qi, Hong	INV-E-215 47	Rindt, Camilo	TST-I-231 53	Saito, Motohiro	PMD-I-511 89	Schmandt, Bastian	TDY-C1-421 69
Qi, Hong	RAD-J-424 76	Rindt, Camilo	NMM-G-525 86	Saito, Takushi	MFP-G-312 62	Sciazko, Anna	CND-H-415 74
Qian, Xiaodong	OPT-F-523 85	Rindt, Camilo C. M.	TDY-C1-412 69	Saito, Yasushi	FCL-H-123 36	Sebilleau, Julien	EVP-B1-211 40
Qian, Xin	EES-K-115 39	Ris, Vladimir	HEX-G-231 50	Saito, Yasushi	HEX-G-215 49	Sefiane, Khellil	EVP-B1-114 29
Qin, Frank G.F.	FCV-F-313 61	Rivière, Philippe	RAD-J-411 76	Saito, Yasushi	PBL-B1-325 57	Segev, Reuven	TDY-C1-416 69
Qiu, Chen-Hui	NMT-F-533 85	Rivière, Philippe	RAD-J-413 76	Saito, Yuji	HPP-K-412 77	Segond, Guillaume	EES-K-121 39
Qiu, Lin	MIN-C1-214 43	Robinson, Anthony	HPP-K-411 77	Saito, Yuji	HPP-K-414 77	Seki, Takashi	BMA-E-112 33
Qiu, Lin	PMD-I-322 64	Rodiet, Christophe	MIN-C1-235 44	Saito, Yuji	TMG-K-514 92	Selle, Laurent	CMB-J-535 91
Qu, Zhiguo	ADS-D-212 46	Rodrigues, Nelson	CNV-C1-532 82	Sáiz Jabardo, José María	NMM-G-422 73	Semenov, Andrey	EVP-B1-115 29
Qu, Zhiguo	IPJ-C1-312 59	Roger, Maxime	RAD-J-314 65	Sakagami, Masaaki	HTE-C2-411 70	Senda, Mamoru	HTE-C2-411 70
Quaresma, João N. N.	FCV-C1-113 31	Rohlfs, Wilko	MIN-C1-233 44	Sakai, Fumika	PMD-I-321 64	Sentenac, Thierry	MIN-C1-221 43
Queeney, John	CDS-J-236 55	Rohlfs, Wilko	FCV-F-311 61	Sakai, Yasuhiko	TTR-C2-113 32	Seo, Han	PBL-B1-523 78
Quinn, Cian	SAT-J-515 90	Roisman, Ilia	NMT-F-535 85	Sakashita, Hiroto	PBL-B1-414 67	Sera, Toshihiro	BMA-E-223 47
Quintard, Michel	PBL-B1-413 67	Roos, Thomas	SOL-B2-213 41	Sakurai, Atsushi	RAD-J-313 65	Sergent, Anne	NCV-F-513 84
Quintard, Michel	CPM-E-421 71	Rosengarten, Gary	SOL-B2-216 41	Sakurai, Yota	TTR-C2-126 32	Serizawa, Yoshihiro	EVP-B1-125 29
Quintard, Michel	CPM-E-422 71	Rosengarten, Gary	SOL-B2-221 42	Salavati, Saeid	FCV-F-232 49	Shah, Mirza	CDS-J-122 38
Quintard, Michel	PMD-I-523 89	Rosengarten, Gary	TPM-B2-525 80	Salort, Julien	MIN-C1-226 43	Shah, Mirza	FBL-B1-225 40
Radermacher, Reinhard	EES-K-114 39	Rossetto, Luisa	FBL-B1-235 41	Salviano, Leandro	OPT-F-524 85	Shah, Mirza	FBL-B1-226 40
Rahim, Ismail	PLS-K-315 66	Rouizi, Y.	INV-E-216 47	Sampath, Sanjay	SAT-J-514 90	Shakouri, Ali	TDY-C1-512 81
Raj, Rishi	EVP-B1-113 29	Rousseau, Benoit	PMD-I-316 64	Samy, Alagiru	CND-H-524 88	Shamirzaev, Alisher S.	FBL-B1-231 41
Raj, Rishi	FLM-H-534 88	Rousseau, Benoit	RAD-J-311 65	Sandberg, Linn Ingunn	NMM-G-534 87	Shan, Xiaodong	CND-H-411 74
Raj, Uday	CND-H-524 88	Rousseau, Pieter	CPM-E-424 71	Sane, Narayan	MCV-D-514 84	Shan, Yanguang	TPS-B2-513 79
Rambaud, Patrick	PLS-K-314 66	Rousseau, Pieter	RAD-J-414 76	Sano, Yoshihiko	PMD-I-421 75	Shao, Cheng	NMM-G-524 86
Ramirez-Rivera, Francisco	TPB-B2-121 30	Roux, Jean-Jacques	NSM-H-321 63	Sano, Yoshihiko	HTE-C2-536 83	Shao, Wei	HTE-C2-312 60
Ramírez-Rivera, Francisco	TPB-B2-125 30	Roux, Stephan	CNV-C1-522 81	Santangelo, Paolo E.	EVP-B1-121 29	Shao, Xuefeng	CND-H-425 74
Ramos, Juan	FCV-F-325 61	Roveta, Guido	CDS-J-215 54	Sapin, Paul	PBL-B1-413 67	Sharar, Darin	EEC-H-214 51
Ramos, Juan	CMB-J-525 91	Roy, Monisha	MCV-D-512 84	Saranjam, Nazli	MTR-F-111 34	Sharifpur, Mohsen	MIN-C1-231 44
Randrianalisoa, Jaona	RAD-J-316 65	Roy, Satyajit	MCV-D-512 84	Sarraf, Kifah	CDS-J-231 55	Sharifpur, Mohsen	TPP-I-221 53
Ranjan, Devesh	HTE-C2-423 70	Roychowdhury, Somasree	NMM-G-514 86	Sasaki, Sho	ECS-K-213 55	Sharifpur, Mohsen	TPP-I-222 53

Sharifpur, Mohsen	FCV-F-324 61	Simon, Terrence	GTB-G-411 73	Stehlik, Petr	EES-K-111 39	Swaminathan, Jaichander	MTR-F-123 34
Sharifpur, Mohsen	NSM-H-314 63	Simon, Terrence	PMD-I-533 90	Stephan, Peter	TPB-B2-123 30	Swaminathan, Prasanna	RAD-J-413 76
Sheer, John	SOL-B2-213 41	Singh, Randeep	HPP-K-414 77	Stephan, Peter	MTR-F-124 34	Swanson, Scot E.	TMG-K-522 92
Shekriladze, Irakli G.	PBL-B1-326 57	Singh, Randeep	TMG-K-514 92	Stephan, Peter	PBL-B1-322 57	Szmyd, Janusz	HTE-C2-234 45
Shen, Chun	NSM-H-316 63	Smeulders, David M. J.	TDY-C1-412 69	Stephan, Peter	PBL-B1-422 67	Szmyd, Janusz	CND-H-415 74
Shen, Cuihong	TPS-B2-513 79	Smirnov, Evgueni M.	HEX-G-231 50	Stephan, Peter	TDY-C1-414 69	Tabe, Yutaka	PMD-I-425 75
Shen, Dan	TST-I-233 53	Smith, Kate	HPP-K-411 77	Steyn, Madder	FCV-F-216 48	Tachibana, Masamitsu	MNF-E-123 33
Shen, Jun	PMD-I-525 89	Smulsky, Yaroslav	TTR-C2-111 32	Still, Martin	MTR-F-124 34	Tada, Yukio	CNV-C1-521 81
Sheremet, Mikhail	NCV-F-423 72	Sobotka, Vincent	MIN-C1-213 43	Stinson, Matthew	GTB-G-411 73	Tadano, Yara de Souza	EEC-H-221 51
Shete, Jayanti	MCV-D-514 84	Sodjavi, Kodjovi	TTR-C2-125 32	Stuckenbruck, Sidney	TPM-B2-524 80	Tadrist, Lounès	EES-K-121 39
Shevchuk, Igor V.	TDY-C1-516 81	Sodjavi, Kodjovi	NSM-H-326 63	Su, Bo	TPP-I-213 52	Tadrist, Lounès	EVP-B1-214 40
Shi, Bo	PPE-G-111 35	Son, Jong Hyeon	CND-H-523 88	Su, Dan	FCV-C1-112 31	Tadrist, Lounès	CDS-J-231 55
Shi, Lin	BMA-E-225 47	Song, Gan	FLM-H-535 88	Su, HsienChin	EEC-H-213 51	Tadrist, Lounès	PBL-B1-423 67
Shi, Xiaojun	HTE-C2-514 82	Song, Hang	ACR-G-323 62	Suga, Kazuhiko	TTR-C2-126 32	Tadrist, Lounès	PBL-B1-424 67
Shi, Yanping	TBF-D-225 46	Song, Jiwei	TMG-K-525 92	Suga, Kazuhiko	NMS-C2-214 44	Tagawa, Masato	TTR-C2-112 32
Shibahara, Masahiko	MLT-H-111 36	Song, Jiwoon	HTE-C2-412 70	Suga, Takafumi	NCV-F-421 72	Tagawa, Toshio	HTE-C2-224 45
Shibahara, Masahiko	NMM-G-521 86	Song, Junping	TPP-I-113 37	Sugai, Shunsuke	CMB-J-524 91	Takahashi, Kazuki	PBL-B1-412 67
Shiga, Takuma	PPE-G-114 35	Song, MengXuan	RNE-C1-321 59	Sugaya, Kazuhiro	HPP-K-413 77	Takahashi, Koji	CDS-J-223 54
Shigenaga, Ryosuke	EES-K-122 39	Song, Yongchen	TPP-I-114 37	Sugimoto, Katsumi	FCL-H-123 36	Takahashi, Koji	NMM-G-532 87
Shih, Duke Po-Chen	TST-I-234 53	Song, Yongchen	TPP-I-121 37	Sugimoto, Takao	HTE-C2-513 82	Takamatsu, Hiroshi	BMA-E-222 47
Shiibara, Naoki	CND-H-521 88	Song, Yongchen	EES-K-112 39	Sugimoto, Toshiki	FCL-H-122 36	Takano, Kohei	HPP-K-422 77
Shikazono, Naoki	TBF-D-222 46	Song, Yongchen	TPP-I-213 52	Sugiura, Tessai	BMA-E-112 33	Takase, Kazuyuki	MIN-C1-232 44
Shikazono, Naoki	HTE-C2-316 60	Song, Yongchen	PMD-I-315 64	Sugiyama, Daichi	TST-I-232 53	Takashiba, Yasuto	TPF-B2-321 58
Shimamura, Kengo	TPF-B2-324 58	Song, Yongchen	PMD-I-326 64	Suleman, Omar	TMG-K-515 92	Takata, Yasuyuki	EVP-B1-114 29
Shimizu, Shun	BMA-E-223 47	Song, Yongchen	PMD-I-532 90	Sun, Chuang	NCV-F-425 72	Takata, Yasuyuki	CDS-J-223 54
Shiomi, Junichiro	PPE-G-114 35	Soto, Ana	NMM-G-422 73	Sun, Fengxian	NSM-H-316 63	Takata, Yasuyuki	NMM-G-532 87
Shiomi, Junichiro	TDY-C1-411 69	Soucasse, Laurent	RAD-J-411 76	Sun, Menghe	TDY-C1-515 81	Takeda, Tetsuaki	ACR-G-322 62
Shioyama, Tsutomu	NCV-F-412 72	Soufiani, Anouar	RAD-J-411 76	Sun, Qie	TMG-K-525 92	Takeishi, Kenichiro	TTR-C2-122 32
Shirai, Katsuaki	OPT-F-525 85	Soufiani, Anouar	RAD-J-413 76	Sun, Yingying	EEF-K-221 56	Takenaka, Nobuyuki	FCL-H-123 36
Shiratori, Kosuke	HPP-K-423 77	Soulaine, Cyprien	CPM-E-422 71	Sun, Yuqing	HTE-C2-532 83	Takenaka, Nobuyuki	MIN-C1-211 43
Shishkin, Andrey	TPF-B2-315 58	Specht, Eckehard	MFP-G-311 62	Sundararajan, Thirumalachari	NMM-G-514 86	Takimoto, Akira	CNV-C1-521 81
Shishkova, Irina	TPS-B2-511 79	Speetjens, Michel F. M.	HTE-C2-525 83	Sunden, Bengt	HEX-G-211 49	Talukdar, Prabal	CND-H-524 88
Shojaeian, Mostafa	FCV-F-235 49	Sphaier, Leandro	TPP-I-112 37	Sunden, Bengt	HTE-C2-425 70	Tam, Hou Kuan	NMM-G-511 86
Shooshtari, Amir	HEX-G-124 35	Spindler, Klaus	CDS-J-111 38	Surblys, Donatas	MLT-H-112 36	Tam, Lap Mou	NMM-G-511 86
Shu, Liangsuo	EES-K-115 39	Spindler, Klaus	EEF-K-233 56	Surtaev, Anton	EVP-B1-215 40	Tamdogan, Enes	NCV-F-426 72
Shustov, Mikhail	FBL-B1-313 57	Srikanth, Rangarajan	TMG-K-523 92	Suto, Hitoshi	FCV-C1-124 31	Tan, Heping	RAD-J-415 76
Shustov, Mikhail	PBL-B1-514 78	Stafford, Jason	TPA-B2-114 30	Suto, Hitoshi	NCV-F-511 84	Tan, He-Ping	FCV-F-326 61
Shyu, Jin-Cherng	NMS-C2-212 44	Stafford, Jason	EEC-H-233 52	Suzuki, Hiroshi	FCV-F-214 48	Tan, He-Ping	NCV-F-425 72
Sian, Rony	HEX-G-122 35	Stafford, Jason	TMG-K-526 92	Suzuki, Hiroshi	HEX-G-236 50	Tan, He-Ping	MCV-D-515 84
Siedel, Samuel	HPP-K-411 77	Stafford, Jason	TMG-K-533 93	Suzuki, Kengo	PMD-I-425 75	Tan, Jianyu	RAD-J-324 65
Sielaff, Axel	PBL-B1-422 67	Stanley, C.	SOL-B2-221 42	Suzuki, Koichi	FBL-B1-313 57	Tan, Jinyi	EES-K-115 39
Simmer, J.	MTR-F-111 34	Starodubtseva, Irina	EVP-B1-215 40	Suzuki, Yuji	RAD-J-323 65	Tan, Kai	EES-K-115 39
Simon, Philippe	MFP-G-314 62	Staub, Christian	EEF-K-233 56	Suzuki, Yuji	OPT-F-522 85	Tanaka, Chitose	FBL-B1-234 41
Simon, Terrence	PMD-I-314 64	Steffen, Paul-Martin	TPP-I-226 53	Suzuki, Yutaka	CDS-J-225 54	Tanaka, Gaku	BMA-E-223 47

Tanaka, Gaku	HPP-K-423 77	Telles, Mariana Cristina	TPP-I-112 37	Totani, Tsuyoshi	RAD-J-321 65	van der Walt, Stefan	RAD-J-414 76
Tanaka, Ryozo	HTE-C2-513 82	Tembhurne, Saurabh	SOL-B2-226 42	Tow, Emily W.	TBF-D-224 46	Van Dyke, Alexander	TPP-I-224 53
Tanaka, Takahiro	PMD-I-424 75	Teodori, Emanuele	PBL-B1-534 79	Toyota, Hiromichi	PLS-K-315 66	Van Oevelen, Tijs	OPT-F-526 85
Tang, D. W.	NMM-G-512 86	Terashima, Osamu	TTR-C2-113 32	Tran, Honghi	TST-I-234 53	van Weelderen, Rob	CPM-E-422 71
Tang, Dawei	TPP-I-124 37	Terekhov, Victor	TTR-C2-111 32	Tran, Julian M.	HEX-G-214 49	Vanderwagen, Calvin	CNV-C1-524 81
Tang, Dawei	MIN-C1-214 43	Terekhov, Victor I.	FCV-C1-123 31	Tranchant, Laurent	TPP-I-214 52	Varava, A.N.	TPB-B2-124 30
Tang, Dawei	FCV-F-221 48	Terekhov, Viktor I.	TPS-B2-514 79	Trenkinshu, Sergey	EEF-K-223 56	Varava, Alexander	HTE-C2-225 45
Tang, Dawei	FBL-B1-315 57	Terekhov, Vladimir	CMB-J-522 91	Trevizoli, Paulo	HEX-G-212 49	Vasquez, Cristal	NMM-G-423 73
Tang, Dawei	PMD-I-322 64	Termentzidis, Konstantinos	NMM-G-533 87	Trifonova, Tatyana	NCV-F-423 72	Vera-García, Francisco	TPB-B2-121 30
Tang, Guihua	CND-H-424 74	Termentzidis, Konstantinos	NMM-G-535 87	Tsai, Hann-Huei	EEC-H-232 52	Vera-García, Francisco	TPB-B2-125 30
Tang, Lingyue	TPP-I-213 52	Terrapon, Vincent E.	MFP-G-314 62	Tschur, Nikolay	HEX-G-231 50	Vera-García, Francisco	TPM-B2-521 80
Tang, Tsz Kit	HTE-C2-324 60	Theristis, Marios	SOL-B2-222 42	Tshimanga, Ntumba	MIN-C1-231 44	Verissimo, Gabriel	RNE-C1-324 59
Tang, Yi-Chun	HEX-G-122 35	Thomas, Ingo	HEX-G-235 50	Tsukahara, Takahiro	TTR-C2-123 32	Vessakosol, Passakorn	IPJ-C1-314 59
Tang, Zhen	SOL-B2-232 42	Thome, John R.	TPN-B2-421 68	Tsurimaki, Yoichiro	RAD-J-325 65	Vicente, Jerome	PMD-I-316 64
Tanigawa, Hirochika	NCV-F-514 84	Thome, John Richard	EEF-K-222 56	Tsuruta, Takaharu	MTR-F-113 34	Vieler, Sarah	CND-H-511 87
Tanigawa, Hirofumi	MTR-F-113 34	Thomsen, Elizabeth	SOL-B2-221 42	Tsuruta, Takaharu	CDS-J-126 38	Vierendeels, Jan	HEX-G-222 50
Taniguchi, Jun	MNF-E-125 33	Thring, Rob	CDS-J-226 54	Tsushima, Shohji	ECS-K-213 55	Vigdorovich, Igor I.	TDY-C1-422 69
Taniguchi, Jun	TEL-K-322 66	Throvagunta, Praveen	HTE-C2-233 45	Tsushima, Shohji	PMD-I-531 90	Vijay, Dig	FCV-F-231 49
Tanimizu, Katsuyoshi	HTE-C2-423 70	Throvagunta, Praveen	PLS-K-311 66	Tu, Jiyuan	TPN-B2-411 68	Vijay, Dig	FCV-F-233 49
Tano, Takuya	FCV-F-214 48	Tian, Chengcheng	EEF-K-232 56	Turek, Vojtech	EES-K-111 39	Villa, Fabio	NMT-F-535 85
Tao, Wenquan	ADS-D-212 46	Tian, Hao	EEF-K-224 56	Türkakar, Göker	TPM-B2-526 80	Vinogradov, Urii	FCV-C1-125 31
Tao, Wenquan	CPM-E-411 71	Tian, Maocheng	TBF-D-225 46	Twomey, Alan	BMA-E-222 47	Vinogradov, Urii	FCV-F-211 48
Tao, Wen-Quan	EVP-B1-111 29	Tian, X.	TPP-I-124 37	Tyagi, Himanshu	EES-K-123 39	Voirand, Antoine	MTR-F-122 34
Tao, Wen-Quan	HEX-G-121 35	Timchenko, Victoria	NSM-H-311 63	Uemura, Suguru	PMD-I-531 90	Volz, Sebastian	TPP-I-214 52
Tao, Wen-Quan	MLT-H-115 36	Timchenko, Victoria	RAD-J-316 65	Ueno, Ai	RAD-J-323 65	Volz, Sebastian	NMM-G-425 73
Tao, Wen-Quan	SOL-B2-224 42	Timchenko, Victoria	HTE-C2-422 70	Ueno, Ichiro	FCV-F-234 49	Vu, Pham Quang	FBL-B1-233 41
Tao, Wen-Quan	SOL-B2-232 42	Timchenko, Victoria	NCV-F-512 84	Ueno, Ichiro	PBL-B1-511 78	Waddell, Alistair	TMG-K-533 93
Tao, Wen-Quan	CDS-J-234 55	Timchenko, Victoria	CMB-J-534 91	Ueno, Takashi	TPF-B2-324 58	Wae-hayee, Makatar	IPJ-C1-314 59
Tao, Yong X.	NSM-H-312 63	Titov, Alexander	FCV-F-211 48	Ullmann, Amos	HTE-C2-524 83	Wakita, Masashi	RAD-J-321 65
Tarasevich, Stanislav	TPF-B2-315 58	Tkachenko, Oxana A.	NCV-F-512 84	Umekawa, Hisashi	HEX-G-215 49	Wako, Takahiro	NMS-C2-211 44
Tardif, Xavier	MIN-C1-213 43	Tkachenko, Svetlana	NCV-F-512 84	Umekawa, Hisashi	TPF-B2-322 58	Walker, Simon	TPF-B2-323 58
Tartarini, Paolo	EVP-B1-121 29	Toda, Ryohei	MLT-H-111 36	Unno, Noriyuki	MNF-E-125 33	Wallenstein, Martin	PMD-I-311 64
Tartarini, Paolo	EES-K-116 39	Togawa, Junya	TST-I-232 53	Unno, Noriyuki	TEL-K-322 66	Wan, Qian	TPN-B2-414 68
Tatami, Atsushi	MNF-E-123 33	Tokunaga, Atsushi	CDS-J-126 38	Ustinov, Alexander	PBL-B1-533 79	Wang, Chao	NSM-H-325 63
Tatasumoto, Keisuke	NCV-F-514 84	Tokunaga, Kenichi	CMB-J-521 91	Utaka, Yoshio	PBL-B1-324 57	Wang, Chenglong	HTE-C2-425 70
Tatsumi, Junichi	NMM-G-523 86	Tomimura, Toshio	TMG-K-524 92	Utaka, Yoshio	FLM-H-532 88	Wang, Chi-Chuan	HEX-G-122 35
Tatsumi, Kazuya	HTE-C2-223 45	Tomiyama, Akio	TBF-D-221 46	Utsumi, Seiho	TPF-B2-324 58	Wang, Chi-Chuan	TMG-K-521 92
Taylor, Robert	EES-K-123 39	Tong, LiGe	NSM-H-315 63	Vadasz, Peter	PMD-I-414 75	Wang, Dayong	TPP-I-114 37
Taylor, Robert	SOL-B2-211 41	Tong, Lige	CND-H-514 87	Vaillon, Rodolphe	RAD-J-325 65	Wang, Dongdong	PMD-I-525 89
Taylor, Robert	SOL-B2-216 41	Tong, Zi-Xiang	MLT-H-115 36	van Buren, Simon	CND-H-511 87	Wang, Evelyn	SOL-B2-223 42
Teixeira, Jose	CPM-E-414 71	Topin, Frederic	PMD-I-325 64	Van de Ven, James	PMD-I-533 90	Wang, Evelyn	NMS-C2-215 44
Teixeira, Jose	CNV-C1-532 82	Topin, Fredéric	PBL-B1-423 67	van den Broek, Martijn	RNE-C1-325 59	Wang, Evelyn	ADS-D-211 46
Teixeira, Senhorinha	CPM-E-414 71	Torii, Shuichi	HTE-C2-415 70	van der Geld, Cees W. M.	TPB-B2-122 30	Wang, Evelyn N.	EVP-B1-113 29
Teixeira, Senhorinha	CNV-C1-532 82	Toshima, Naoki	TEL-K-323 66	van der Meer, Theo	PMD-I-515 89	Wang, Evelyn N.	CDS-J-232 55

Wang, Evelyn N.	CDS-J-236 55	Wang, Weilong	TPP-I-212 52	Wu, Jian-Fu	EEC-H-232 52	Xiong, Yuan	CMB-J-526 91
Wang, Evelyn N.	FLM-H-534 88	Wang, Wenhua	HTE-C2-511 82	Wu, Jianghong	ACR-G-323 62	Xu, Chao	TST-I-236 53
Wang, Guo-xiang	PPE-G-113 35	Wang, Xiao-Ming	CND-H-512 87	Wu, Jing	TDY-C1-514 81	Xu, Feng	TDY-C1-425 69
Wang, Guo-xiang	BMA-E-221 47	Wang, Xinjiang	PPE-G-115 35	Wu, L.	NMT-F-534 85	Xu, Gang	EEF-K-221 56
Wang, Guo-Xiang	SAT-J-511 90	Wang, Xiuling	CPM-E-413 71	Wu, Ming	TST-I-236 53	Xu, Hui	HEX-G-223 50
Wang, Hai-Dong	MLT-H-114 36	Wang, Xiyun	EES-K-115 39	Wu, Wei	MTR-F-121 34	Xu, Hujin	PMD-I-423 75
Wang, Hai-Dong	TMG-K-516 92	Wang, Yabo	BMA-E-115 33	Wu, Wei	TPN-B2-413 68	Xu, Liang	TDY-C1-426 69
Wang, Han	NCV-F-425 72	Wang, Yi-Fei	TMG-K-535 93	Wu, Wenjuan	PPE-G-113 35	Xu, Liang	HTE-C2-514 82
Wang, Hong	FLM-H-535 88	Wang, Yuanyuan	TEL-K-321 66	Wu, Wenjuan	BMA-E-221 47	Xu, Min	TPN-B2-423 68
Wang, Hongfu	HTE-C2-311 60	Wang, Zhaoliang	TPP-I-124 37	Wu, Xinxin	PMD-I-512 89	Xu, Pengfei	PBL-B1-513 78
Wang, Hui	ADS-D-212 46	Wang, Zhaoliang	NMM-G-512 86	Wu, Yuting	TMG-K-513 92	Xu, Rui-Na	CND-H-423 74
Wang, Jianli	TPP-I-116 37	Wang, Zhicheng	FBL-B1-315 57	Wu, Yu-Ting	NSM-H-325 63	Xu, Shuhong	PMD-I-424 75
Wang, Jiaqi	TPP-I-114 37	Wang, Zhiyun	FCV-C1-112 31	Wu, Zihua	PLS-K-313 66	Xu, Wei	CDS-J-222 54
Wang, Jiaqi	PMD-I-315 64	Warrier, Gopinath R.	HTE-C2-416 70	Wulf, Rhena	FCV-F-231 49	Xu, Xiangyang	HTE-C2-321 60
Wang, Jiaqi	PMD-I-532 90	Warsinger, David E. M.	MTR-F-123 34	Wulf, Rhena	FCV-F-233 49	Xu, Yongjun	FCV-F-313 61
Wang, Jingfu	SOL-B2-234 42	Watanabe, Hirotatsu	PMD-I-513 89	Wuttijumnong, Vijit	TMG-K-514 92	Xu, Zhi	HTE-C2-312 60
Wang, Kun	SOL-B2-224 42	Watanabe, Hirotatsu	CMB-J-524 91	Xi, Guannan	HEX-G-223 50	Xu, Zhiming	NMT-F-534 85
Wang, Kun	TMG-K-525 92	Watanabe, Takumi	FCV-F-234 49	Xi, Guannan	CNV-C1-534 82	Xuan, Yimin	PPE-G-111 35
Wang, Le	GTB-G-413 73	Wei, Gaosheng	CND-H-526 88	Xi, Guan-Nan	EVP-B1-111 29	Xuan, Yimin	RAD-J-326 65
Wang, Lei	HTE-C2-425 70	Wei, Guanghua	SAT-J-514 90	Xi, Xinming	FCV-F-315 61	Xuan, Yimin	PBL-B1-513 78
Wang, Li	NSM-H-315 63	Wei, Jinjia	PBL-B1-516 78	Xia, Ke-Qing	NCV-F-415 72	Xuan, Yimin	NMT-F-531 85
Wang, Li	PBL-B1-536 79	Wei, Xiaolan	TPP-I-212 52	Xia, Xinlin	NSM-H-316 63	Yagi, Takashi	MNF-E-123 33
Wang, Li	CND-H-514 87	Weibel, Justin A.	PMD-I-411 75	Xia, Xin-Lin	TPP-I-122 37	Yagov, Victor V.	PBL-B1-526 78
Wang, Lijuan	HEX-G-223 50	Weigand, Bernhard	HTE-C2-512 82	Xia, Xin-Lin	NCV-F-425 72	Yakovlev, Anatoly	TPF-B2-315 58
Wang, Lixin	CND-H-526 88	Wen, Chang-Da (Alex)	RAD-J-422 76	Xiao, Liehui	FCV-F-315 61	Yamada, Akira	EES-K-122 39
Wang, Moran	CND-H-411 74	Wen, Rongfu	CDS-J-222 54	Xiao, Rong	FLM-H-534 88	Yamada, Akira	CNV-C1-523 81
Wang, Moran	PMD-I-514 89	West, Alastair	HEX-G-233 50	Xiao, Xin	TST-I-235 53	Yamada, Jun	RAD-J-425 76
Wang, Naihua	TMG-K-512 92	White, Mary Anne	CND-H-515 87	Xie, Gongnan	HEX-G-211 49	Yamada, Kenta	MIN-C1-234 44
Wang, Naihua	TMG-K-525 92	Wilcox, Douglas	PMD-I-515 89	Xie, Huaqing	TPP-I-115 37	Yamada, Shunsuke	FCV-C1-121 31
Wang, Qian	TST-I-233 53	Williamson, Nicholas	NCV-F-515 84	Xie, Huaqing	PLS-K-313 66	Yamada, Shunsuke	CND-H-521 88
Wang, Qiuwang	HEX-G-211 49	Wilson, Mike	GTB-G-413 73	Xie, Huaqing	TEL-K-321 66	Yamada, Yukio	MIN-C1-234 44
Wang, Qiuwang	HEX-G-234 50	Wirtz, Siegmar	MFP-G-311 62	Xie, Ming	RAD-J-415 76	Yamada, Yukio	MIN-C1-236 44
Wang, Qiuwang	HTE-C2-321 60	Woffenden, Albert	SOL-B2-216 41	Xie, Xiaochen	RAD-J-415 76	Yamada, Yutaka	CDS-J-223 54
Wang, Rui	TPN-B2-422 68	Woitalka, Alexander	HEX-G-235 50	Xie, Xiaodong	FCV-C1-115 31	Yamaguchi, Hiroki	FBL-B1-221 40
Wang, Shenglong	TPP-I-121 37	Wong, Teck Neng	TBF-D-223 46	Xie, Xiaodong	CMB-J-533 91	Yamaguchi, Tomohiko	TPF-B2-321 58
Wang, Shixue	CDS-J-221 54	Woodfield, Peter	MCV-D-511 84	Xin, Fang	TPN-B2-423 68	Yamaguchi, Tomohiko	TPN-B2-414 68
Wang, Shixue	TEL-K-326 66	Wrobel, Witold	HTE-C2-234 45	Xin, Feng	PMD-I-313 64	Yamaguchi, Yasutaka	MLT-H-112 36
Wang, Shu-Lei	FBL-B1-223 40	Wu, Bangxian	HTE-C2-533 83	Xin, Gongming	HTE-C2-311 60	Yamamoto, Akihiro	CNV-C1-521 81
Wang, Song	HEX-G-121 35	Wu, Bin	EEF-K-223 56	Xin, Gongming	HPP-K-421 77	Yamamoto, Mami	HTE-C2-411 70
Wang, Tao	FBL-B1-315 57	Wu, BingHeng	RNE-C1-321 59	Xin, Shihe	CNV-C1-525 81	Yamashina, Goshi	TPF-B2-322 58
Wang, Wei	TDY-C1-426 69	Wu, Choi Keng	NMM-G-511 86	Xin, Shihe	NCV-F-516 84	Yamashita, Kyohei	NMM-G-531 87
Wang, Wei	HTE-C2-514 82	Wu, Chuansong	PLS-K-312 66	Xing, Yunfei	FCV-F-322 61	Yamashita, Seiya	EEC-H-231 52
Wang, Wei-Hsiang	GTB-G-416 73	Wu, Hao	HTE-C2-312 60	Xiong, Yanbin	PMD-I-415 75	Yan, Hong Bin	TDY-C1-423 69
Wang, Weilong	ADS-D-216 46	Wu, Huiying	EVP-B1-126 29	Xiong, Yaxuan	TMG-K-513 92	Yan, Jun-Jie	TPM-B2-532 80

Yan, Yuying	BMA-E-116 33	Yao, Shichune	TPP-I-113 37	Yuan, Chao	OPT-F-521 85	Zhang, Hui	HTE-C2-313 60
Yan, Yuying	NSM-H-313 63	Yarygina, Nadezhda	TTR-C2-111 32	Yuan, Shihua	TPN-B2-413 68	Zhang, Ji	HTE-C2-426 70
Yan, Yuying	TPN-B2-414 68	Yastrebov, Arseniy	CDS-J-224 54	Yuan, Yinnan	CNV-C1-534 82	Zhang, JiaJie	IPJ-C1-312 59
Yanagihara, Hideki	NMM-G-531 87	Yasumi, Keisuke	PBL-B1-421 67	Yuan, Zhong-Xian	PMD-I-313 64	Zhang, Jin	PPE-G-111 35
Yanagihara, Jurandir	OPT-F-524 85	Yasuoka, Haruka	NMS-C2-214 44	Yue, Lindsey	SOL-B2-231 42	Zhang, Le	CND-H-423 74
Yanazawa, Tadamichi	NCV-F-412 72	Yazawa, Kazuaki	TDY-C1-512 81	Yue, Peng	MIN-C1-214 43	Zhang, Li	PMD-I-514 89
Yang, Charles	PBL-B1-535 79	Yeo, Jiwon	EEC-H-231 52	Yue, Peng	PMD-I-322 64	Zhang, Liang	PBL-B1-531 79
Yang, Chien-Yuh	FBL-B1-222 40	Yeoh, Guan Heng	HTE-C2-232 45	Yue, Yujin	HTE-C2-313 60	Zhang, Lun	MTR-F-112 34
Yang, Chun	NMM-G-426 73	Yeoh, Guan Heng	HTE-C2-324 60	Yuen, Chun	CMB-J-534 91	Zhang, Peng	TST-I-235 53
Yang, Jianfeng	HEX-G-234 50	Yeoh, Guan Heng	NCV-F-512 84	Yuen, Richard Kwok Kit	CMB-J-534 91	Zhang, Ping	NMT-F-531 85
Yang, Jiayue	RAD-J-315 65	Yeoh, Guan Heng	CMB-J-534 91	Yuguchi, Seiichiro	HPP-K-423 77	Zhang, Shuai	TDY-C1-426 69
Yang, Jiayue	RAD-J-324 65	Yi, Hong-Liang	FCV-F-326 61	Yun, Byong-jo	CDS-J-113 38	Zhang, Shun-De	TPP-I-122 37
Yang, Jinguo	HTE-C2-414 70	Yi, Hong-Liang	MCV-D-515 84	Yun, Rin	HTE-C2-326 60	Zhang, Shusheng	HTE-C2-311 60
Yang, Juekuan	TPP-I-116 37	Yin, Shaowu	NSM-H-315 63	Zaitsev, Dmitry	EVP-B1-115 29	Zhang, TieJun	FLM-H-531 88
Yang, Junfeng	TPN-B2-424 68	Yin, Shaowu	CND-H-514 87	Zaitsev, Dmitry	FLM-H-533 88	Zhang, Wen	ADS-D-212 46
Yang, Kai-Shing	NMS-C2-212 44	Ying, Zhaoxia	BMA-E-221 47	Zakharenkov, Alexander	HTE-C2-225 45	Zhang, Wenjie	RAD-J-315 65
Yang, Lei	TPP-I-114 37	Yip, Meesin	GTB-G-414 73	Zakharov, Nikolay	TDY-C1-413 69	Zhang, Xiang-Xiong	NMS-C2-213 44
Yang, Lei	PMD-I-315 64	Yokobori, Seiichi	PBL-B1-421 67	Zalcman, Daniel	NCV-F-422 72	Zhang, Xing	TPP-I-116 37
Yang, Lei	PMD-I-532 90	Yokota, Hideo	BMA-E-223 47	Zamanian, Rahim	FCV-F-235 49	Zhang, Xing	TPP-I-123 37
Yang, Lijun	EEF-K-221 56	Yokouchi, Yasuo	MIN-C1-215 43	Zamengo, Massimiliano	ECS-K-215 55	Zhang, Xing	RNE-C1-321 59
Yang, Lijun	HTE-C2-313 60	Yokoyama, Daiki	ACR-G-322 62	Zamora, Miguel	CDS-J-235 55	Zhang, Xing	TEL-K-326 66
Yang, Lijun	FCV-F-315 61	Yokoyama, Keishi	TBF-D-222 46	Zamoum, Mohammed	PBL-B1-424 67	Zhang, Xing	NMM-G-532 87
Yang, Lin	HTE-C2-416 70	Yong, Qingqing	FCV-C1-112 31	Zditovets, Andrey	FCV-F-211 48	Zhang, Xing	TMG-K-516 92
Yang, Liu	RAD-J-415 76	Yoo, Seong-Yeon	EES-K-125 39	Zeigarnik, Yury	PBL-B1-411 67	Zhang, Xin-Rong	FCV-F-223 48
Yang, Mingjun	TPP-I-114 37	Yoon, Sungho	HTE-C2-314 60	Zeng, Jianbang	MTR-F-121 34	Zhang, Xin-Rong	TDY-C1-515 81
Yang, Mingjun	TPP-I-121 37	Yoshida, Atsumasa	RAD-J-412 76	Zeng, Miao	SOL-B2-234 42	Zhang, Xin-Rong	NMM-G-526 86
Yang, Minlin	FCV-F-313 61	Yoshida, Hideo	PMD-I-426 75	Zeng, Miao	FCV-F-221 48	Zhang, Xinxin	SOL-B2-234 42
Yang, Mo	FCV-C1-112 31	Yoshida, Hideo	PMD-I-511 89	Zeng, Min	HEX-G-234 50	Zhang, Xinxin	PLS-K-312 66
Yang, Moucun	SOL-B2-211 41	Yoshida, Hiroyuki	MIN-C1-232 44	Zeng, Min	HTE-C2-321 60	Zhang, Xinyu	CND-H-525 88
Yang, Moucun	SOL-B2-216 41	Yoshida, Kenji	NCV-F-421 72	Zhang, Baowen	EEC-H-212 51	Zhang, Yamin	BMA-E-115 33
Yang, Qianpeng	BMA-E-225 47	Yoshidome, Junpei	FBL-B1-312 57	Zhang, Baowen	TMG-K-534 93	Zhang, Ya-ning	HTE-C2-312 60
Yang, Sungwoo	ADS-D-211 46	Yoshimura, Tomoya	HEX-G-215 49	Zhang, Biao	INV-E-215 47	Zhang, Yanni	HTE-C2-426 70
Yang, Wei-Wei	MLT-H-115 36	Yoshinaga, Takao	PMD-I-521 89	Zhang, Chao	PMD-I-533 90	Zhang, Yi	TPP-I-114 37
Yang, Wenming	CMB-J-536 91	Yoshino, Hajime	HTE-C2-415 70	Zhang, Chengbin	NMM-G-513 86	Zhang, Yilong	NMT-F-534 85
Yang, Xiao Hu	TDY-C1-423 69	You, Wei	CPM-E-411 71	Zhang, Cheng-Mei	TPP-I-111 37	Zhang, Yinping	TDY-C1-513 81
Yang, Xiao-Ping	TPM-B2-532 80	Youn, Suk Bum	BMA-E-111 33	Zhang, Chengwu	NMM-G-515 86	Zhang, Yonghai	PBL-B1-516 78
Yang, Xiaoxi	FCV-F-313 61	Youn, Youngjik	TBF-D-222 46	Zhang, Chong	HPP-K-421 77	Zhang, Yuwen	FCV-C1-112 31
Yang, Xingtuan	TPN-B2-411 68	Younsi, Amina	CPM-E-421 71	Zhang, Ding-cai	CDS-J-234 55	Zhang, Yuwen	INV-E-212 47
Yang, Yahui	FCV-F-224 48	Yu, Hai-Yan	NMT-F-533 85	Zhang, Fang-Fang	FLM-H-535 88	Zhang, Z.	NMT-F-534 85
Yang, Yongping	HTE-C2-313 60	Yu, Wei	TPP-I-115 37	Zhang, Guangmeng	PBL-B1-536 79	Zhang, Zhen	CDS-J-234 55
Yang, Yongping	CND-H-526 88	Yu, Xingjian	MFP-G-313 62	Zhang, Guanmin	TBF-D-225 46	Zhang, Zhen	SAT-J-513 90
Yankov, Georgii	CDS-J-114 38	Yu, Yan	CND-H-525 88	Zhang, Guoging	PMD-I-413 75	Zhang, Zhuomin	RAD-J-313 65
Yao, Chun-Wei	TPM-B2-522 80	Yu, Zi-Tao	PBL-B1-531 79	Zhang, Hao-Chun	NMT-F-533 85	Zhao, Bo	RAD-J-313 65
Yao, G.	TPP-I-124 37	Yuan, Chao	MFP-G-313 62	Zhang, Huaichen	TDY-C1-412 69	Zhao, Changying	TST-I-233 53

Zhao, Changying	RAD-J-322	65	Zhao, Yuechao	EES-K-112 39	- [Zhou, Haocheng	HTE-C2-313	60	Zhu, Zihao	PMD-I-315	64
Zhao, Changying	SAT-J-514	90	Zhao, Yuechao	TPP-I-213 52		Zhou, Hong	HTE-C2-222	45	Zhu, Zihao	PMD-I-532	90
Zhao, Chuang-Yao	EVP-B1-111	29	Zhao, Yulong	CDS-J-221 54		Zhou, Jia-Wei	NMS-C2-213	44	Zhukov, Vladimir	EVP-B1-212	40
Zhao, Jiafei	TPP-I-114	37	Zhao, Zhou	HTE-C2-516 82	- [Zhou, Xiaofeng	TPP-I-115	37	Zhukov, Vladmir	PBL-B1-514	78
Zhao, Jiafei	TPP-I-121	37	Zharenov, Igor	SOL-B2-214 41		Zhou, Xinhuan	TPP-I-213	52	Zibart, Alexander	HEX-G-214	49
Zhao, Jiafei	PMD-I-315	64	Zheng, Cheng	SOL-B2-216 41		Zhou, Xinhuan	PMD-I-326	64	Zilio, Claudio	CDS-J-125	38
Zhao, Jiafei	PMD-I-532	90	Zheng, Huai	MFP-G-313 62		Zhou, Zhi-Fu	SAT-J-511	90	Zilio, Claudio	CDS-J-214	54
Zhao, Jingde	SAT-J-512	90	Zheng, Lili	SAT-J-514 90	Ì	Zhu, Beibei	NSM-H-313	63	Ziskind, Gennady	HEX-G-221	50
Zhao, Jun	CDS-J-221	54	Zheng, Mei	TBF-D-226 46	Ì	Zhu, Guo-Qing	HEX-G-121	35	Zondag, Herbert	TST-I-231	53
Zhao, Nannan	HPP-K-425	77	Zheng, Mei	TPN-B2-422 68		Zhu, Hongye	TPN-B2-411	68	Zondag, Herbert	NMM-G-525	86
Zhao, Tianshou	EEC-H-212	51	Zheng, Wentian	TPN-B2-424 68		Zhu, Jianjun	TBF-D-226	46	Zondag, Herbert A.	TDY-C1-412	69
Zhao, Tianshou	TMG-K-534	93	Zheng, Xinghua	MIN-C1-214 43	Ì	Zhu, Jianjun	TPN-B2-422	68	Zong, Xiao	TPM-B2-532	80
Zhao, Xin-Peng	SOL-B2-232	42	Zheng, Xinghua	PMD-I-322 64		Zhu, Kai	BMA-E-115	33	Zou, Shuai	CNV-C1-534	82
Zhao, Yang	NMT-F-533	85	Zhong, Fengquan	FCV-F-322 61		Zhu, Xiaolei	HTE-C2-222	45	Zuke, Donald	EEF-K-223	56
Zhao, Yaohua	HTE-C2-426	70	Zhong, Minho	CNV-C1-534 82	Ì	Zhu, Xun	FLM-H-535	88	Zuo, Yuanzhi	FCV-F-313	61
Zhao, Yongling	NCV-F-411	72	Zhou, Bo	CND-H-423 74	Ì	Zhu, Yangying	NMS-C2-215	44			
Zhao, Yuechao	TPP-I-121	37	Zhou, Chenn Q.	EEF-K-223 56	į	Zhu, Yinhai	PMD-I-415	75			

Statistics

World Total Abstract submitted: 1308, Full paper submitted: 914 (70%), Finally accepted: 699 (53%)

Region	Member(s)
Australia*	Australia New Zealand Indonesia Malaysia Singapore
Brazil*	Brazil, Other South American countries not specified elsewhere
Canada*	Canada
China*	China
France*	France, African countries not specified elsewhere
Germany*	Germany, Austria
India*	India, Other South Asian countries not specified elsewhere
Israel*	Israel
Italy*	Italy, Spain
Japan*	Japan, Taiwan, Pakistan, Other East Asian countries not specified elsewhere
Korea*	Korea
Portugal*	Portugal
Russia*	Russia, Ukraine, Republic of Belarus, Moldova, Georgia, Armenia, Azerbaijan
South Africa*	South Africa
Switzerland*	Switzerland
The Netherlands*	The Netherlands, Benelux countries and Scandinavia
UK*	UK, Ireland, Greece, Turkey, Egypt, OtherMiddle East countries not specified elsewhere, Serbia, Croatia, Slovenia, Bosnia and other Balkan countries, Estonia, Latvia and Lithuania, Czech republic and Slovakia, Hungary, Romania, Poland, Bulgaria and Albania
USA*	United States of America, Mexico, Other Central American countries

End-Credit Rolls

In addition to the committee members and the authors listed above, we extend our sincere thanks to the following contributors.

Heat Transfer Community

John Rose Jungho Kim Peter Woodfield Laurent-Emmanuel Brizzi

Ex-Mayer of Kyoto City Yorikane Masumoto

Governor of Kyoto Pref. Keiji Yamada

Heat Transfer Society of Japan Ken Ishizuka Takeshi Osawa Hiroko Kuramizu

Science Council of Japan

Masaya Naruse Misa Sato Yuuhei Shikata Ren Shimada Gou Suga Asuka Umeno

International Centre for Heat and Mass Transfer Faruk Arinç Tuğba Gűn

Begell House

Yelena Shafeyeva Andrey Kuchinsky Vicky Lipowski Anastasia Matskovich Meghan Rohrmann Craig Weidner Tanaka Print Hironobu Matsumoto

Art Tourist Masahiro Tachi

JTB Western Japan Hirotsugu Hosokawa Ichiro Nakamura Ken Maehara

Kyoto Convention Bureau Masako Yamazaki Teruhisa Yamauchi

Kyoto International Conference Center Kazuo Inamori Hiroo Kinoshita Yoshiko Namura Shin-ichi Kotera Takeshi Takahashi Yuji Ueda Naoki Hirose Yuko Sakaguchi Koji Tanaka

Koji Tanaka Shuji Ishii Toshitaka Funai Masnori Fujimi Hiroaki Kubo Ryojo Imae Kiyomi Kawamata Yumi Yanase

Kyocera Ai Komaki

Kyoto City Archeological Research Institute Toshio Kajikawa Koto (Ikuta-ryu) Yoshiko Kawamoto Rikako Hayashi Noriko Kawamoto Megumi Yamashita

Suntory Holdings Hiroaki Hata Kyoichi Higuchi Kazuhiko Eto Takashi Kawamura

Kitagawahonke Sake Brewery Yukihiro Kitagawa

Ikenobo Katsuhito Kurata Katsushi Fujioka

The Kyoto Shimbun Newspaper Risako Inoue

Eizan Electric Railway Yasushi Matsushita

Benikoya Masahiro Okabe Harumi Katsu

Kawashima Selkon Textiles

Kyoto Univ. COOP Hitomi Kawaguchi

Kameyama Candle House Mari Miura Walt Disney Animation Studios Rasmus Tamstorf Christine Chrisman

Nakaya Ukichiro Museum of Snow and Ice Kenzo Kanda

Yukiguni-kan Kenta Kaise

Shirakawa Village Office Tamao Ozawa

Sendai Kyodo Printing

Susumu Hasegawa Takeshi Hasegawa Yohei Fujiyama Koichiro Sasaki Satoshi Kanomata

Tokyo Creative Yukihiko Takahashi

Hiroki Takahashi

Tohoku University

Junnosuke Okajima Hitomi Kobayashi Yuta Aizawa Ryoji Banba Teppei Furusawa Yuki Kanda Shun Kashiwada Tatsuya Kobari Takuma Kogawa Takahiro Okabe Shingo Nakamura Ryota Nakaoku Toru Saito Jun Sasaki Tessai Sugiura Yuya Takahashi Yoichiro Tsurimaki Yuki Yamaguchi

Kyoto Institute of Technology Tomohiro Goto Toshihiro Horii Tadashi Kaiiima Rvota Kimura Yukihiro Kimura Teruhiko Kinoshita Keisuke Maeda **Rvo Morimoto** Naoto Nishi Atsushi Nishida Takato Tabuchi Kazuya Taira Yuki Tanaka Ko Terai

Doshisha University

Hironobu Itakura Toshiki Mori Kenji Ono Satoru Tsutsumi Naoki Wada Yuki Yamamoto

Kansai University Ikki Yumoto

Kanazawa University Mami Kurokawa Akiko Kosaka Kazuko Noro Seiko Sato Mika Yamaguchi John Goodman Shingo Yonezawa Miki Noda Tomomi Kaneko Hiroko Ohmori Osamu Sato Kota Miyoshi Nurul Zieyana M. Annuar Takafumi Fuiii Naoto Furukawa Tetsushi Isomoto Kotaro Itakura Kisen Jo Ken Kawaharada Koki Kawano Rvuichi Kimura Tatsuya Kume Koji Kusumi Michito Matsuoka Takahiro Miyamoto Shusuke Mori Shunsuke Mukai Kai Nakayama Daiki Saisho Svogo Sakurai Kojiro Sano Satoshi Seo Kosuke Sugimoto Shoki Takehisa Yuuki Tanaka Atsushi Uevama Kotaro Yamaguchi Yuji Yamaguchi Saho Yoshida

Kyoto University

Special Thanks

We are deeply grateful to the late Professor Kenjiro Suzuki, Professor Emeritus of Kyoto University, for his warm encouragement and support that in 2006 laid the groundwork for holding IHTC-15 in Kyoto this year. (cf. *Int. J. Heat and Mass Transfer*, Vol. 51, 13–14, 2008, pp. 3257–3258)

IHTC-15 Program Booklet

Edited by IHTC-15 Executive Committee, Kyoto, Japan Printed by Sendai Kyodo Printing, Sendai, Japan Published on July 24, 2014 ©2014 IHTC-15 Executive Committee http://www.ihtc-15.org info@ihtc-15.org

Memo

Memo

Memo

The 16th International Heat Transfer Conference

10-15 August 2018, Beijing, China

Organizing Committee Chair: Ping Cheng Executive Committee Chair: Xing Zhang Int. Scientific Committee Chair: Z Y Guo http://www.ihtc16.org/

Under the auspices of The Heat Transfer Society of China

